Prototipo para la aplicación de campos eléctricos integrado a un sistema de cámaras microfluídicas para la lisis celular de bacterias productoras de PHA
dc.contributor.advisor | Merchán Castellanos, Nuri Andrea | |
dc.contributor.advisor | Oliveros Hincapié, Jorge Armando | |
dc.contributor.author | Frasica Romero, Karen Valentina | |
dc.date.accessioned | 2024-11-30T02:08:49Z | |
dc.date.available | 2024-11-30T02:08:49Z | |
dc.date.issued | 2024-11 | |
dc.description.abstract | Los polihidroxialcanoatos (PHAs), son un tipo de poliéster alifático sintetizado naturalmente por algunas bacterias y que presenta un gran potencial biotecnológico como bioplástico debido a que tiene propiedades fisicoquímicas similares a los plásticos de origen petroquímico. Si bien se tiene un gran interés en su producción, el costo en el proceso de extracción del biopolímero utilizando solventes halogenados aumenta su precio final en un 50%. La extracción eléctrica se presenta como una alternativa a la extracción con solventes. Es así, como Rojas diseñó e implementó un prototipo para la extracción de PHA por campos eléctricos. Pese a lograr obtener el biopolímero, la falta de control de flujo durante el procesamiento de las bacterias en el dispositivo ocasiona adherencia del material biológico a los electrodos, así como contaminación por parte de restos de oxidación de los electrodos de cobre. El objetivo de este proyecto fue el desarrollo de un prototipo para la aplicación de campos eléctricos integrado a un sistema de cámaras microfluídicas para la lisis celular de bacterias productoras de PHA. Se definió la geometría de las cámaras microfluídicas a través de una revisión bibliográfica, y mediante matrices de decisión se seleccionó la geometría rectangular. Utilizando el software COMSOL Multiphysics se simuló el campo eléctrico, permitiendo caracterizar el campo eléctrico generado por diferentes voltajes aplicados, desde los 180 V hasta los 390 V, generando un campo eléctrico de entre 150 a 1.2 Kv/m. Se realizó la simulación del comportamiento de velocidad y presión del fluido dentro de las cámaras microfluídicas, evidenciando que la geometría transversal rectangular presentó un campo eléctrico uniforme y en conjunto de la bifurcación en Y, aseguró un flujo laminar. En la fase de construcción, por técnica de transferencia termodinámica de Tóner y grabado de PCB, se obtuvieron electrodos en cobre de 15 µ𝑚 de espesor y microcámaras en PDMS que pueden procesar 3,98 µ𝐿 por canal con una velocidad aproximada de 0,06 m/s. Estas estructuras finales presentaron un error relativo de 22,47% con respecto a las medidas establecidas en el diseño detallado. Finalmente, se estableció el voltaje de operación para la extracción de Cupriavidus necator en 180 V y para Bacillus licheniformis en 285 V, de acuerdo a la relación que se identificó entre sus características morfológicas y el potencial de membrana inducido por acción del campo eléctrico. El porcentaje de extracción alcanzado con el dispositivo para Cupriavidus necator fue de 62,9% y para Bacillus licheniformis de 75,6% con un procesamiento de 2 mL en 45 segundos. Los porcentajes se compararon con los resultados obtenidos mediante el método tradicional por extracción de dispersión de hipoclorito de sodio-cloroformo. Se concluyó que la implementación de cámaras microfluídicas al prototipo de campos eléctricos, presentó ventajas tanto en la concentración del campo eléctrico como en el control de flujo, control de tiempo y aumento del volumen de procesamiento. Este trabajo fue desarrollado en colaboración con la Universidad Federal de Minas Gerais, Brasil | |
dc.description.abstractenglish | Polyhydroxyalkanoates (PHAs) are a type of aliphatic polyester naturally synthesized by certain bacteria and hold great biotechnological potential as bioplastics due to their physicochemical properties, which are similar to petrochemical-based plastics (Müller-Santos et al., 2021). While there is significant interest in their production, the cost of extracting the biopolymer using halogenated solvents increases its final price by 50% (Garcia-Garcia et al., 2022). Electrical extraction emerges as an alternative to solvent extraction. As such, Rojas (2022) designed and implemented a prototype for PHA extraction using electric fields. Although the biopolymer was successfully obtained, the lack of flow control during bacterial processing in the device caused biological material to adhere to the electrodes, as well as contamination from copper electrode oxidation residues. The aim of this project was to develop a prototype for applying electric fields integrated with a microfluidic chamber system for cell lysis of PHA-producing bacteria. The geometry of the microfluidic chambers was defined through a literature review, and using decision matrices, the rectangular geometry was selected. COMSOL Multiphysics software was used to simulate the electric field, allowing for characterization of the field generated by different applied voltages, ranging from 180V to 390V, producing an electric field of between 150 and 1.2 KV/m. The fluid velocity and pressure behavior inside the microfluidic chambers was also simulated, showing that the rectangular cross-sectional geometry provides a uniform electric field and, together with the Y-bifurcation, ensures laminar flow. In the construction phase, by thermodynamic toner transfer technique and PCB etching, 15 m thick copper electrodes and PDMS microchambers were obtained that can process 3.98 L per channel with an approximate speed of 0.06 m/s. These final structures presented a relative error of 22.47% with respect to the measurements established in the detailed design. Finally, the operating voltage for the extraction of Cupriavidus necator was set at 180 V and for Bacillus licheniformis at 285 V, according to the relationship identified between their morphological characteristics and the membrane potential induced by the action of the electric field. The extraction percentage achieved with the device for Cupriavidus necator was 62.9% and for Bacillus licheniformis 75.6% with a processing of 2 mL in 45 seconds. The percentages were compared with the results obtained using the traditional method by sodium hypochlorite-chloroform dispersion extraction. It was concluded that the implementation of microfluidic chambers to the electric field prototype presented advantages both in electric field concentration and in flow control, time control and increased processing volume. This work was developed in collaboration with the Federal University of Minas Gerais, Brazil | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bioingeniero | spa |
dc.description.sponsorship | Universidad Federal de Minas Gerais | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13491 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Bioingeniería | spa |
dc.relation.references | Adeleye, A. T., Odoh, C. K., Enudi, O. C., Banjoko, O. O., Osiboye, O. O., Odediran, E. T., & Louis, H. (2020). Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process biochemistry, 96, 174-193. | |
dc.relation.references | Adebajo, S. O., Bankole, P. O., Ojo, A. E., & Akintokun, P. O. (2024). Screening and optimization of polyhydroxybutyrate (PHB) by Lysinibacillus fusiformis from diverse environmental sources. The Microbe, 2, 100043. | |
dc.relation.references | Ahad, I. Z. M., Harun, S. W., Gan, S. N., & Phang, S. W. (2018). Polyaniline (PAni) optical sensor in chloroform detection. Sensors and Actuators B: Chemical, 261, 97-105. | |
dc.relation.references | Al Taki, B. (2023). Well-posedness for a class of compressible non-Newtonian fluids equations. Journal of Differential Equations, 349, 138-175. | |
dc.relation.references | Ali, S., Lodhi, F. S., Ahmad, M. U., Khan, Q. F., Asad-Ur-Rehman, N., Ahmed, A., Liaqat, I., Aftab, M. N., Shah, T. A., Salamatullah, A. M., Wondmie, G. F., & Bourhia, M. (2024). Kinetics and synthesis of poly(3-hydroxybutyrate) by a putative-mutant of Bacillus licheniformis. Bioresources And Bioprocessing, 11(1). https://doi.org/10,1186/s40643-024-00750-y | |
dc.relation.references | Alvarado, S., & Vázquez, S. (2009). Propiedades físico-químicas de membranas PDMS empleadas en lentes líquidas. Superficies y vacío, 22(3), 61-66. | |
dc.relation.references | Amraini, S. Z., Irianty, R. S., Hamzah, N., Muria, S. R., Sari, N. L., Azhar, R. A., & Susanto, R. (2023). The use of fractional factorial design to analyze the effect of sulfuric acid concentration and temperature on furfural yield. Materials Today: Proceedings, 87, 240-245. | |
dc.relation.references | Annabestani, M., Esmaeili-Dokht, P., & Fardmanesh, M. (2020). A novel, low cost, and accessible method for rapid fabrication of the modifiable microfluidic devices. Scientific Reports, 10(1), 16513. | |
dc.relation.references | Andersson, M. (2018). Microfluidics at High Pressures: Understanding, Sensing, and Control (Doctoral dissertation, Acta Universitatis Upsaliensis). | |
dc.relation.references | Anderson A.J. y Dawes E.A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54,450-472. | |
dc.relation.references | Anis, S. N. S., Iqbal, N. M., Kumar, S., & Al-Ashraf, A. (2013). Increased recovery and improved purity of PHA from recombinant Cupriavidus necator. Bioengineered, 4(2), 115-118. | |
dc.relation.references | Ascencio-Galván, M. L., López-Agudelo, V. A., Gómez-Ríos, D., & Ramirez-Malule, H. (2023). A bibliometric landscape of polyhydroxyalkanoates production from low-cost substrates by Cupriavidus necator and its perspectives for the Latin American bioeconomy. | |
dc.relation.references | Baker, E. (1994). A review of recent research on health effects of human occupational exposure to organic solvents. Critical Review in the Journal of Occupational Medicine 36: 1079. | |
dc.relation.references | Balasubramaniam, L., Arayanarakool, R., Marshall D., Li, B., Lee, S. & Chen, P.. (2017). Impact of cross-sectional geometry on mixing performance of spiral microfluidic channels characterized by swirling strength of Dean-vortices. Journal of Micromechanics and Microengineering, 27(9), 095016–. doi:10,1088/1361-6439/aa7fc8 | |
dc.relation.references | Bejan, A. (2016). Advanced engineering thermodynamics. John Wiley & Sons. | |
dc.relation.references | Berthomieu, C., Hienerwadel, R. (2009). Fourier transform infrared (FTIR) spectroscopy. Photosynth Res 101, 157–170, https://doi.org/10,1007/s11120-009-9439-x | |
dc.relation.references | Betancur, M. y Agudelo, L.M. Producción de biopolímeros (polihidroxialcanoatos - PHAs) a partir de una cepa comercial empleando sustratos no convencionales [Tesis Maestría en Ingeniería]. Medellín (Colombia): Universidad de Antioquia, Facultad de Ingeniería, 2011, 103 p. | |
dc.relation.references | Bhat, S. G., Thivaharan, V., & Divyashree, M. S. (2024). Sustainable Opportunities in the Downstream Processing of the Intracellular Biopolymer Polyhydroxyalkanoate. ChemBioEng Reviews, 11(1), 79-94. | |
dc.relation.references | Borisova I, Stoilova O, Manolova N, Rashkov I. (2020). Modulating the Mechanical Properties of Electrospun PHB/PCL Materials by Using Different Types of Collectors and Heat Sealing. Polymers. 12(3):693. https://doi.org/10,3390/polym12030693 | |
dc.relation.references | Brown, R. B., & Audet, J. (2008). Current techniques for single-cell lysis. Journal of the Royal Society Interface, 5(suppl_2), S131-S138. | |
dc.relation.references | Chakraborty, S. et al. (2023) ‘Effect of microchannel geometry and linker molecules on surface immobilization efficiency of proteins in microfluidic devices’, Journal of Biotechnology, 364, pp. 31–39. doi:10,1016/j.jbiotec.2023.01.005. | |
dc.relation.references | Chen, P. C., Wu, M. H., & Wang, Y. N. (2014). Microchannel geometry design for rapid and uniform reagent distribution. Microfluidics and nanofluidics, 17, 275-285. | |
dc.relation.references | Chen, P. C., Wang, Y. N., & Wu, M. H. (2015). Development of bifurcation microchannel to uniformly distribute a liquid plug. Chemical Engineering Research and Design, 102, 253-260, | |
dc.relation.references | Chen, P. C., & Tsai, C. M. (2018). Exploring factors for uniformly distributing liquid droplets in a bifurcation tree microfluidic chip. Sensors and Actuators B: Chemical, 259, 1123-1132. | |
dc.relation.references | Chiliquinga Astudillo, V. J. (2024). Reformulación de un activador para la aplicación en todo tipo de artículo a base de la transferencia de pintura en agua a temperatura ambiente. | |
dc.relation.references | Collas, F., Dronsella, B. B., Kubis, A., Schann, K., Binder, S., Arto, N., Claassens, N. J., Kensy, F., & Orsi, E. (2023). Engineering the biological conversion of formate into crotonate in Cupriavidus necator. Metabolic Engineering, 79, 49-65. https://doi.org/10.1016/j.ymben.2023.06.015 | |
dc.relation.references | Congreso de la República de Colombia (Julio 7, 2022). Ley 2232. Por la cual se prohíbe en el territorio nacional la fabricación, importación, exportación, comercialización y distribución de plásticos de un solo uso y se dictan otras disposiciones” acumulado con el pl 247 de 2020, título nuevo: “por la cual se prohíbe en el territorio nacional la fabricación, importación, exportación, comercialización y distribución de plásticos de un solo uso, se establecen medidas tendientes a la reducción de su producción y consumo, y se dictan otras disposiciones. https://www.camara.gov.co/plasticos | |
dc.relation.references | da Cruz, W.,; Inkovskiy, V. & Overhage, J. (2020). Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. Microorganisms, 8, 1220, https://doi.org/10,3390/microorganisms8081220 | |
dc.relation.references | da Silva, N. B., Carciofi, B. A. M., Ellouze, M., & Baranyi, J. (2019). Optimization of turbidity experiments to estimate the probability of growth for individual bacterial cells. Food microbiology, 83, 109-112. | |
dc.relation.references | Dabighi, A., & Toghraie, D. (2020). A new microfluidic device for separating circulating tumor cells based on their physical properties by using electrophoresis and dielectrophoresis forces within an electrical field. Computer methods and programs in biomedicine, 185, 105147. | |
dc.relation.references | Daneshmand, S., Monfared, V., & Lotfi Neyestanak, A. A. (2017). Effect of tool rotational and Al 2 O 3 powder in electro discharge machining characteristics of NiTi-60 shape memory alloy. Silicon, 9, 273-283. | |
dc.relation.references | Daguerre, H., Solsona, M., Cottet, J., Gauthier, M., Renaud, P., & Bolopion, A. (2020). Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: Origin, challenges and opportunities. Lab on a Chip, 20(20), 3665-3689. | |
dc.relation.references | Dalsasso, R. R., Pavan, F. A., Bordignon, S. E., De Aragão, G. M. F., & Poletto, P. (2019). Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate. Process Biochemistry, 85, 12-18. https://doi.org/10,1016/j.procbio.2019.07.007 | |
dc.relation.references | Dejaloud, A., Vahabzadeh, F., and Habibi, A. (2017) Ralsto-nia eutropha as a biocatalyst for desulfurization of diben-zothiophene. Bioprocess Biosyst Eng 40: 969–980 | |
dc.relation.references | De Mello, A. F. M., de Souza Vandenberghe, L. P., Machado, C. M. B., Valladares-Diestra, K. K., de Carvalho, J. C., & Soccol, C. R. (2023). Polyhydroxybutyrate production by Cupriavidus necator in a corn biorefinery concept. Bioresource Technology, 370, 128537. | |
dc.relation.references | Duvigneau, S., Kettner, A., Carius, L., Griehl, C., Findeisen, R., & Kienle, A. (2021). Fast, inexpensive, and reliable HPLC method to determine monomer fractions in poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Applied Microbiology and Biotechnology, 105(11), 4743-4749. | |
dc.relation.references | Emerson, D. R., Cieślicki, K., Gu, X., & Barber, R. W. (2006). Biomimetic design of microfluidic manifolds based on a generalised Murray’s law. Lab on a Chip, 6(3), 447. doi:10,1039/b516975e | |
dc.relation.references | European Bioplastics. (2021). Market. European Bioplastics e.V. https://www.european-bioplastics.org/market/ | |
dc.relation.references | Fernandez, E. R., Concha, J. L. H., & Sánchez, S. A. M. (2016). Producción de polihidroxialcanoatos (PHAs) a partir de Ralstonia eutropha en un medio con harina de yuca como fuente de carbono. Biotecnología en el sector agropecuario y agroindustrial, 14(1), 19-26. | |
dc.relation.references | García Vásquez, D. (2023). Establecimiento de una estrategia para la producción de PHA en Ralstonia eutropha ATCC 17699 a través de la variación de la concentración de oxígeno disuelto en una mezcla de vinaza-melaza como medio alternativo. | |
dc.relation.references | Geboers, B., Scheffer, H. J., Graybill, P. M., Ruarus, A. H., Nieuwenhuizen, S., Puijk, R. S., & Meijerink, M. R. (2020). High-voltage electrical pulses in oncology: irreversible electroporation, electrochemotherapy, gene electrotransfer, electrofusion, and electroimmunotherapy. Radiology, 295(2), 254-272 | |
dc.relation.references | Gómez-Cardozo, J. R., Velasco-Bucheli, R., Marín-Pareja, N., Ruíz-Villadiego, O. S., Correa-Londoño, G. A., & Mora-Martínez, A. L. (2020). Fed-batch production and characterization of polyhydroxybutyrate by Bacillus megaterium LVN01 from residual glycerol. Dyna, 87(214), 111-120. | |
dc.relation.references | González García, Y., Meza Contreras, J. C., González Reynoso, O., & Córdova López, J. A. (2013). Síntesis y biodegradación de polihidroxialcanoatos: plásticos de origen microbiano. Revista internacional de contaminación ambiental, 29(1), 77-115 | |
dc.relation.references | Garcia-Garcia, D., Quiles-Carrillo, L., Balart, R., Torres-Giner, S., & Arrieta, M. P. (2022). Innovative solutions and challenges to increase the use of Poly (3-hydroxybutyrate) in food packaging and disposables. European Polymer Journal, 178, 111505. | |
dc.relation.references | García, D., Gómez, N., Raso, J., & Pagán, R. (2005). Bacterial resistance after pulsed electric fields depending on the treatment medium pH. Innovative Food Science & Emerging Technologies, 6(4), 388-395. | |
dc.relation.references | Ghosh, S. B., Bhattacharya, K., Nayak, S., Mukherjee, P., Salaskar, D., & Kale, S. P. (2015). Identification of different species of Bacillus isolated from Nisargruna Biogas Plant by FTIR, UV–Vis and NIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 148, 420-426. | |
dc.relation.references | Gobi, K., & Vadivelu, V. M. (2015). Polyhydroxyalkanoate recovery and effect of in situ extracellular polymeric substances removal from aerobic granules. Bioresource Technology, 189, 169-176. | |
dc.relation.references | Gorgog, S. (1995) Ultraviolet-visible spectrophotometry in pharmaceutical analysis. CRC Press, Boca Raton | |
dc.relation.references | Govil, T., Wang, J., Samanta, D., David, A., Tripathi, A., Rauniyar, S., ... & Sani, R. K. (2020). Lignocellulosic feedstock: A review of a sustainable platform for cleaner production of nature’s plastics. Journal of cleaner production, 270, 122521. | |
dc.relation.references | Gözke, G., Prechtl, C., Kirschhöfer, F., Mothes, G., Ondruschka, J., Brenner-Weiss, G., Obst, U., & Posten, C. (2012). Electrofiltration as a purification strategy for microbial poly-(3-hydroxybutyrate). Bioresource Technology, 123, 272-278. https://doi.org/10,1016/j.biortech.2012.07.039 | |
dc.relation.references | Greenpace, Universidad de los Andes, & MASP. (2019). SITUACIÓN ACTUAL DE LOS PLÁSTICOS EN COLOMBIA Y SU IMPACTO EN EL MEDIO AMBIENTE. MASP, 1. http://greenpeace.co/pdf/2019/gp_informe_plasticos_colombia_02.pdf | |
dc.relation.references | Greenpeace (2019). Desechando el Futuro: Las empresas ofrecen falsas soluciones a la contaminación por plásticos. https://www.greenpeace.org/colombia/noticia/issues/contaminacion/greenpeace-revela-como-multinacionales-dan-falsas-soluciones-para-la-contaminacion-plastica/#:~:text=Un%20nuevo%20informe%20de%20Greenpeace,crisis%20de%20la%20contaminaci%C3%B3n%20pl%C3%A1stica. | |
dc.relation.references | Grigorov, E., Kirov, B., Marinov, M. B., & Galabov, V. (2021). Review of microfluidic methods for cellular lysis. Micromachines, 12(5), 498. | |
dc.relation.references | Grohmann, E., Christie, P. J., Waksman, G., & Backert, S. (2018). Type IV secretion in Gram‐negative and Gram‐positive bacteria. Molecular microbiology, 107(4), 455-471. | |
dc.relation.references | Guancha, M. A., Realpe-Delgado, M. E., & García-Celis, J. (2022). Obtención polihidroxialcanoatos (PHA) a partir de biomasa lignocelulósica: un estudio de revisión. Informador Técnico, 86(1), 111-135. | |
dc.relation.references | Guzmán, C., Hurtado, A., Carreño, C., & Casos, I. (2017). Producción de polihidroxialcanoatos por bacterias halófilas nativas utilizando almidón de cáscaras de Solanum tuberosum L. Scientia Agropecuaria, 8(2), 109-118 | |
dc.relation.references | Hansel, C. J. (2008). Mapping of pressure losses through microchannels with sweeping-bends of various angle and radii. University of Central Florida. | |
dc.relation.references | Hung, S., & Chang, T. (2012). Single cell lysis and DNA extending using electroporation microfluidic device. BioChip journal, 6(1), 84-90, | |
dc.relation.references | Huang, D., Zhao, D., Li, J., Wu, Y., Zhou, W., Wang, W., ... & Li, Z. (2017). High cell viability microfluidic electroporation in a curved channel. Sensors and Actuators B: Chemical, 250, 703-711. | |
dc.relation.references | ISTAS (2010). Efectos sobre la salud y el medio ambiente |. https://istas.net/istas/riesgo-quimico/efectos-sobre-la-salud-y-el-medio-ambiente | |
dc.relation.references | Jiang, G., Johnston, B., Townrow, D., Radecka, I., Koller, M., & Chaber, P. et al. (2018). Biomass Extraction Using Non-Chlorinated Solvents for Biocompatibility Improvement of Polyhydroxyalkanoates. Polymers, 10(7), 731. https://doi.org/10,3390/polym10070731 | |
dc.relation.references | Jordan, D. R. Electric field. Salem Press Encyclopedia of Science, [s. l.], 2022. Disponível em: https://search.ebscohost.com/login.aspx?direct=true&db=ers&AN=87321952&lang=es&site=eds-live&scope=site . Acesso em: 31 out. 2022. | |
dc.relation.references | Juárez Jiménez, P. (2018). Dispositivo microfluídico modular. Lab-on-a-chip. | |
dc.relation.references | Juengert, J. R., Bresan, S., & Jendrossek, D. (2018). Determination of polyhydroxybutyrate (PHB) content in Ralstonia eutropha using gas chromatography and Nile red staining. Bio-protocol, 8(5), e2748-e2748. | |
dc.relation.references | Karbalaei Baba, A. (2019). A Theoretical, Numerical, and Experimental Study of Trapped Droplet Coalescence and Mixing, Passively and Under Electric Field | |
dc.relation.references | Kang, S., Kim, B., Yim, S. J., Kim, J. O., Kim, D. P., & Kim, Y. C. (2020). On-chip electroporation system of Polyimide film with sheath flow design for efficient delivery of molecules into microalgae. Journal of Industrial and Engineering Chemistry, 88, 159-166. | |
dc.relation.references | Kansiz, M., Domínguez-Vidal, A., McNaughton, D., & Lendl, B. (2007). Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallisation of polyhydroxyalkanoates (PHAs). Analytical and bioanalytical chemistry, 388, 1207-1213. | |
dc.relation.references | Kalyan, S. (2022). EXPANDING VORTEX TRAPPING AND ELECTROPORATION CAPABILITIES TO SMALL CELLS (Doctoral dissertation, Johns Hopkins University). | |
dc.relation.references | Khan, S. Khan, S. Khan, L. Khan, A. Farooq, A., Kalsoom & A. Abdullah.. (2018). Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. 10,1007/978-3-319-92955-2_9. | |
dc.relation.references | Khanna S. y Srivastava A.K. (2005). A simple structured mathematical model for biopolymer (P3HB) production. Biotechnol. Prog. 21, 830-838. | |
dc.relation.references | Kim, J., Johnson, M., Hill, P., & Gale, B. K. (2009). Microfluidic sample preparation: cell lysis and nucleic acid purification. Integrative Biology, 1(10), 574-586. | |
dc.relation.references | Kotnik, T., Kramar, P., Pucihar, G., Miklavcic, D., & Tarek, M. (2012). Cell membrane electroporation-Part 1: The phenomenon. IEEE Electrical Insulation Magazine, 28(5), 14-23. | |
dc.relation.references | Kumar, R., Verma, A., Shome, A., Sinha, R., Sinha, S., Jha, P. K., ... & Vara Prasad, P. V. (2021). Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability, 13(17), 9963. | |
dc.relation.references | Kurian, N. S., & Das, B. (2021). Comparative analysis of various extraction processes based on economy, eco-friendly, purity and recovery of polyhydroxyalkanoate: A review. International Journal of Biological Macromolecules, 183, 1881-1890 | |
dc.relation.references | Kusakari, S. I., Okada, K., Shibao, M., & Toyoda, H. (2020). High voltage electric fields have potential to create new physical pest control systems. Insects, 11(7), 447 | |
dc.relation.references | Kuznetsov, I. A. (Ed.). (2010). Microfluidics: theory and applications. Nova Science Publishers, Incorporated. | |
dc.relation.references | Lawley, M. D., Stein, L. Y., & Sauvageau, D. (2024). Dissolution and recovery of poly (3-hydroxybutyrate) in switchable solvents and the formation of a switchable gel. Current Research in Green and Sustainable Chemistry, 9, 100421. | |
dc.relation.references | Lee, S. M., Lee, H. J., Kim, S. H., Suh, M. J., Cho, J. Y., Ham, S., ... & Yang, Y. H. (2021). Screening of the strictly xylose-utilizing Bacillus sp. SM01 for polyhydroxybutyrate and its co-culture with Cupriavidus necator NCIMB 11599 for enhanced production of PHB. International Journal of Biological Macromolecules, 181, 410-417. | |
dc.relation.references | Lee, S. Y. (1996a). Bacterial Polyhydroxyalkanoates. Biotechnology and Bioengineering 49, 1-14. | |
dc.relation.references | Li, D. (Ed.). (2008). Encyclopedia of microfluidics and nanofluidics. Springer Science & Business Media. | |
dc.relation.references | Lin, C. H., Tsai, C. H., & Fu, L. M. (2005). A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions. Journal of Micromechanics and Microengineering, 15(5), 935. | |
dc.relation.references | Li, M., & Zinkle, S. J. (2012). Physical and mechanical properties of copper and copper alloys. | |
dc.relation.references | Liu. Y, Jian-Chun W, Li R, Qin T, Liu W, Xue W, Rui L, Yan-Rong Z, Jin-Y, (2011). Microfluidics-based assay on the effects of microenvironmental geometry and aqueous flow on bacterial adhesion behaviors,Journal of Pharmaceutical Analysis, Volume 1, Issue 3. | |
dc.relation.references | Liu, H., Li, P., & Wang, K. (2015). The flow downstream of a bifurcation of a flow channel for uniform flow distribution via cascade flow channel bifurcations. Applied Thermal Engineering, 81, 114-127. | |
dc.relation.references | Liu, Y., Song, X., Yang, W., Wang, M., Lian, G., & Li, Z. J. (2024). Production of polyhydroxyalkanoates by engineered Halomonas bluephagenesis using starch as a carbon source. International Journal of Biological Macromolecules, 261, 129838. | |
dc.relation.references | Lo, Y. J., & Lei, U. (2019). A continuous flow-through microfluidic device for electrical lysis of cells. Micromachines, 10(4), 247. | |
dc.relation.references | Lozano, A. (Agosto 02, 2019). Proyecto de Ley 066. Por medio de la cual se establecen medidas tendientes a la reducción de la producción y el consumo, de los plásticos de un solo uso en el territorio nacional, se regula un régimen de transición para reemplazar progresivamente por alternativas reutilizables, biodegradables u otras cuya degradación no genere contaminación, se crean mecanismos de financiación se dictan otras disposiciones http://leyes.senado.gov.co/proyectos/index.php/proyectos-ley/cuatrenio-2018-2022/2019-2020/article/80-por-medio-de-la-cual-se-establecen-medidas-tendientes-a-la-reduccion-de-la-produccion-y-el-consumo-de-los-plasticos-de-un-solo-uso-en-el-territorio-nacio | |
dc.relation.references | Lu, H., Schmidt, M. A., & Jensen, K. F. (2005). A microfluidic electroporation device for cell lysis. Lab on a Chip, 5(1), 23-29. | |
dc.relation.references | Luengo, J. (2017). Estudio de mojabilidad y caracterización del sistema PDMS - vidrio en dispositivos microfluídicos. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1850-11682017000100003 | |
dc.relation.references | Macagnan, K. L., Alves, M. I., & Moreira, A. D. S. (2019). Approaches for enhancing extraction of bacterial polyhydroxyalkanoates for industrial applications. Biotechnological Applications of Polyhydroxyalkanoates, 389-408. | |
dc.relation.references | Mahajan, R., Krishna, H., Singh, A. K., & Ghadai, R. K. (2018, June). A Review on Copper and its alloys used as electrode in EDM. In IOP Conference Series: Materials Science and Engineering (Vol. 377, No. 1, p. 012183). IOP Publishing. | |
dc.relation.references | Mahdavi, R., Hashemi-Najafabadi, S., Ghiass, M. A., & Adiels, C. B. (2024). Microfluidic design for in-vitro liver zonation—a numerical analysis using COMSOL Multiphysics. Medical & biological engineering & computing, 62(1), 121-133 | |
dc.relation.references | Maleki, M. A., Zhang, J., Kashaninejad, N., Soltani, M., & Nguyen, N.-T. (2020). Magnetofluidic spreading in circular chambers under a uniform magnetic field. Microfluidics and Nanofluidics, 24(10). https://doi.org/10,1007/s10404-020-02387-7 | |
dc.relation.references | Martínez, E., Estrems, M., Miguel, V., Garrido, A., & Guillén, J. A. (2009). Aplicación de la metodología de superficie de respuesta para la optimización de parámetros de soldadura en función de la distribución térmica resultante. | |
dc.relation.references | Mayboudi, L. S. (2019). Geometry Creation and Import With COMSOL Multiphysics. Mercury Learning and Information. | |
dc.relation.references | Melvin, E. M., Moore, B. R., Gilchrist, K. H., Grego, S., & Velev, O. D. (2011). On-chip collection of particles and cells by AC electroosmotic pumping and dielectrophoresis using asymmetric microelectrodes. Biomicrofluidics, 5(3). | |
dc.relation.references | Merchán N. (2010). Avaliação do sistema de mobilização de poli-3-hidroxibutirato em Burkholderia sacchari (Doctoral dissertation, Universidade de São Paulo) | |
dc.relation.references | Mernier, G., Martinez-Duarte, R., Lehal, R., Radtke, F., & Renaud, P. (2012). Very high throughput electrical cell lysis and extraction of intracellular compounds using 3D carbon electrodes in lab-on-a-chip devices. Micromachines, 3(3), 574-581. | |
dc.relation.references | Mohamadi, M. (2023). Plastic Types and Applications. Plastic Waste Treatment and Management: Gasification Processes, 1-19. | |
dc.relation.references | Mohamed, H. (2012). Use of microfluidic technology for cell separation. Blood cell-an overview of studies in hematology, 195-226. | |
dc.relation.references | Montiel-Jarillo, G., Morales-Urrea, D. A., Contreras, E. M., López-Córdoba, A., Gómez-Pachón, E. Y., Carrera, J., & Suárez-Ojeda, M. E. (2022). Improvement of the polyhydroxyalkanoates recovery from mixed microbial cultures using sodium hypochlorite pre-treatment coupled with solvent extraction. Polymers, 14(19), 3938. | |
dc.relation.references | Morlino, M. S., García, R. S., Savio, F., Zampieri, G., Morosinotto, T., Treu, L., & Campanaro, S. (2023). Cupriavidus necator as a platform for polyhydroxyalkanoate production: An overview of strains, metabolism, and modeling approaches. Biotechnology Advances, 69, 108264. https://doi.org/10.1016/j.biotechadv.2023.108264 | |
dc.relation.references | Morshed, I., Shams, M., & Mussivand, T. (2013). Analysis of electric fields inside microchannels and single cell electrical lysis with a microfluidic device. Micromachines, 4(2), 243-256. | |
dc.relation.references | Moshood, T. D., Nawanir, G., Mahmud, F., Mohamad, F., Ahmad, M. H., & AbdulGhani, A. (2022). Biodegradable plastic applications towards sustainability: A recent innovations in the green product. Cleaner Engineering and Technology, 6, 100404 | |
dc.relation.references | Muñoz Ariza, O. M. (2019). Evaluación del proceso de extracción y purificación del polímero poli (3-hidroxibutirato) P3HB obtenido de la cepa Burkholderia cepacia B27 con un solvente orgánico no halogenado (Bachelor's thesis, Fundación Universidad de América). | |
dc.relation.references | Müller-Santos, M., Koskimäki, J. J., Alves, L. P. S., de Souza, E. M., Jendrossek, D., & Pirttilä, A. M. (2021). The protective role of PHB and its degradation products against stress situations in bacteria. FEMS microbiology reviews, 45(3), fuaa058. | |
dc.relation.references | Murali, D. & Mohd, Y. (2022). Spectroscopy and Spectrophotometry: Principles and Applications for Colorimetric and Related Other Analysis. 10,5772/intechopen.101106 | |
dc.relation.references | Ng, I. S., Tan, S. I., Kao, P. H., Chang, Y. K., & Chang, J. S. (2017). Recent developments on genetic engineering of microalgae for biofuels and bio‐based chemicals. Biotechnology journal, 12(10), 1600644. | |
dc.relation.references | Nguyen, N. V., Le Manh, T., Nguyen, T. S., Le, V. T., & Van Hieu, N. (2021). Applied electric field analysis and numerical investigations of the continuous cell separation in a dielectrophoresis-based microfluidic channel. Journal of Science: Advanced Materials and Devices, 6(1), 11-18. | |
dc.relation.references | Nygaard, D., Yashchuk, O., Noseda, D. G., Araoz, B., & Hermida, É. B. (2021). Improved fermentation strategies in a bioreactor for enhancing poly (3-hydroxybutyrate)(PHB) production by wild type Cupriavidus necator from fructose. Heliyon, 7(1). | |
dc.relation.references | Ohkubo, Y., Endo, K., & Yamamura, K. (2018). Adhesive-free adhesion between heat-assisted plasma-treated fluoropolymers (PTFE, PFA) and plasma-jet-treated polydimethylsiloxane (PDMS) and its application. Scientific reports, 8(1), 18058. | |
dc.relation.references | Osorio Cadavid, E., Ramírez, M., López, W. A., & Mambuscay, L. A. (2009). Estandarización de un protocolo sencillo para la extracción de ADN genómico de levaduras. Revista Colombiana de Biotecnología, 11(1), 125-131. | |
dc.relation.references | Park, J., Han, D. H., & Park, J. K. (2020). Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Lab on a Chip, 20(7), 1191-1203. | |
dc.relation.references | Pasirayi, G., Auger, V., Scott, S. M., Rahman, P., Islam, M., O’Hare, L., & Ali, Z. (2011). Microfluidic Bioreactors for Cell Culturing: A Review. Micro And Nanosystems, 3(2), 137-160, https://doi.org/10,2174/1876402911103020137 | |
dc.relation.references | Pandian, K., Ajanth Praveen, M., Hoque, S. Z., Sudeepthi, A., & Sen, A. K. (2020). Continuous electrical lysis of cancer cells in a microfluidic device with passivated interdigitated electrodes. Biomicrofluidics, 14(6), 064101. | |
dc.relation.references | Pei, X. D., Li, F., Gao, T. T., Su, L. Y., Yu, F. T., Shi, P., ... & Wang, C. H. (2023). Utilization of feather keratin waste to antioxidant and migration-enhancer peptides by Bacillus licheniformis 8-4. Journal of Applied Microbiology, 134(2), lxad005. | |
dc.relation.references | Peng, T., Qiang, J., & Yuan, S. (2023). Sheathless inertial particle focusing methods within microfluidic devices: a review. Frontiers in Bioengineering and Biotechnology, 11 | |
dc.relation.references | Peñarete Acosta, D. A. (2017). Diseño de dispositivos de microfluídica para la evaluación de quimiotaxis bacteriana. | |
dc.relation.references | Pérez, O. H. R. (2018). Soldadura del cobre. Recomendaciones tecnológicas. Ciencias Holguín, 24(2), 01-09. | |
dc.relation.references | Platero Dueñas, J. (2023). Desarrollo de dispositivos microfluídicos mediante impresión 3D para aplicaciones en biomedicina | |
dc.relation.references | Porras, M. A., Villar, M. A., & Cubitto, M. A. (2018). Improved intracellular PHA determinations with novel spectrophotometric quantification methodologies based on Sudan black dye. Journal of microbiological methods, 148, 1-11. | |
dc.relation.references | Prieto, G. A. L. (2018). Desarrollo de sistemas microfluídicos en la multiescala para el cultivo celular y tisular (Doctoral dissertation, Universidad de Zaragoza). | |
dc.relation.references | Probiotek. (2017). CALDO LURIA [Ficha técnica]. https://www.probiotek.com/productos/reactivos/medios-de-cultivo-reactivos/agar-de-mac-conkey/ | |
dc.relation.references | Psoma, S. D., Sobianin, I., & Tourlidakis, A. (2022). Computational and Experimental Investigation of Microfluidic Chamber Designs for DNA Biosensors. Engineering Proceedings, 16(1), 16. | |
dc.relation.references | Qin, R., & Duan, C. (2017). The principle and applications of Bernoulli equation. Journal Of Physics Conference Series, 916, 012038. https://doi.org/10,1088/1742-6596/916/1/012038 | |
dc.relation.references | Ramírez-Navas, J. S. (2006). Introducción a la reología de los alimentos. Revista ReCiTeIA. | |
dc.relation.references | Ramos, A. F. (2019). Extracción, purificación y modificación de un biopolímero del tipo poli(3-hidroxibutirato) obtenido de la fermentación de ácidos grasos con B. cepacia. | |
dc.relation.references | Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration & Biodegradation, 126, 45-56. | |
dc.relation.references | Reyes, C., Thostenson, J. O., Oswalt, K., Roe11, J., & Gomez, D. (2020) Temperature Effects on Thermomechanical Properties of Elastomeric Stamps for Micro Transfer Printing Applications. | |
dc.relation.references | Ríos-Sánchez, E., Calleros, E., González-Zamora, A., Rubio, J., Martínez, O. C., Martínez, A., & Pérez-Morales, R. (2016). Análisis comparativo de diferentes métodos de extracción de DNA y su eficiencia de genotipificación en población mexicana. Acta universitaria, 26(4), 56-65. | |
dc.relation.references | Riis, V., & Mai, W. (1988). Gas chromatographic determination of poly-β-hydroxybutyric acid in microbial biomass after hydrochloric acid propanolysis. Journal of Chromatography A, 445, 285-289 | |
dc.relation.references | Rojas, E (2022) Prototipo para la extracción de polihidroxialcanoato a partir de un cultivo de Ralstonia Eutropha mediante lisis celular por aplicación de campos eléctricos en condiciones de laboratorio. [Tesis de pregrado]. Universidad El Bosque. | |
dc.relation.references | Rohde, M. (2019). The Gram-positive bacterial cell wall. Microbiology Spectrum, 7(3), 10-1128. | |
dc.relation.references | Ronďošová, S., Legerská, B., Chmelová, D., Ondrejovič, M., & Miertuš, S. (2022). Optimization of growth conditions to enhance PHA production by Cupriavidus necator. Fermentation, 8(9), 451. | |
dc.relation.references | Sánchez, M. (2020). Strategies for searching scientific bibliographic information for a systematic review. RevistaCyRs https://cyrs.zaragoza.unam.mx/wp-content/Contenido/Volumenes/V2N2/07_Estrategias_para_la%20busqueda_de_informacion_bibliografica.pdf | |
dc.relation.references | Sangkharak, K., & Prasertsan, P. (2012). Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application. The Journal of general and applied microbiology, 58(3), 173-182. | |
dc.relation.references | Saji, R., Ramani, A., Gandhi, K., Seth, R., & Sharma, R. (2024). Application of FTIR spectroscopy in dairy products: a systematic review. Food and Humanity, 100239 | |
dc.relation.references | Saravanan, K., Umesh, M., & Kathirvel, P. (2022). Microbial Polyhydroxyalkanoates (PHAs): A Review on Biosynthesis, Properties, Fermentation Strategies and Its Prospective Applications for Sustainable Future. Journal of Polymers and the Environment, 1-33. | |
dc.relation.references | Segura, D., Noguez, R., & Espín, G. (2007). Contaminación ambiental y bacterias productoras de plásticos biodegradables. Biotecnología, 14(3), 361-372. | |
dc.relation.references | Shahid, S., Razzaq, S., & Farooq, R. (2021). Polyhydroxyalkanoates: Next generation natural biomolecules and a solution for the world's future economy. International Journal of Biological Macromolecules, 166, 297-321. | |
dc.relation.references | Shamala, T. R., Divyashree, M. S., Davis, R., Kumari, K. L., Vijayendra, S. V. N., & Raj, B. (2009). Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy. Indian journal of microbiology, 49, 251-258. | |
dc.relation.references | Sharma, P., Fu, J., Spicer, V., Krokhin, O. V., Çiçek, N., & Sparling, R. (2016). Global changes in the proteome of Cupriavidus necator H16 during poly-(3-hydroxybutyrate) synthesis from various biodiesel by-product substrates. AMB Express, 6(1). https://doi.org/10,1186/s13568-016-0206-z | |
dc.relation.references | Shehadul Islam, M., Aryasomayajula, A., & Selvaganapathy, P. R. (2017). A review on macroscale and microscale cell lysis methods. Micromachines, 8(3), 83. | |
dc.relation.references | Shen, F., Ai, M., Li, Z., Lu, X., Pang, Y., & Liu, Z. (2021). Pressure measurement methods in microchannels: advances and applications. Microfluidics and Nanofluidics, 25, 1-31. | |
dc.relation.references | Shleeva, M. O., Kondratieva, D. A., & Kaprelyants, A. S. (2023). Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics, 15(7), 1893. https://doi.org/10,3390/pharmaceutics15071893 | |
dc.relation.references | Singh, M., Patel, S. K., & Kalia, V. C. (2009). Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microbial cell factories, 8, 1-11. | |
dc.relation.references | Sirohi, R. (2021). Sustainable utilization of food waste: Production and characterization of polyhydroxybutyrate (PHB) from damaged wheat grains. Environmental Technology & Innovation, 23, 101715. | |
dc.relation.references | Stulnig, T. M., & Amberger, A. (1994). Exposing contaminating phenol in nucleic acid preparations. Biotechniques, 16(3), 402-404. | |
dc.relation.references | Tamayol, A. & Bahrami, M. (2010). Laminar flow in microchannels with noncircular Cross Section. Journal of Fluids Engineering. Vol. 132. DOI: 10,1115/1.4001973 | |
dc.relation.references | Thu, N. T. T., Hoang, L. H., Cuong, P. K., Viet-Linh, N., Nga, T. T. H., Kim, D. D., ... & Nhi-Cong, L. T. (2023). Evaluation of polyhydroxyalkanoate (PHA) synthesis by Pichia sp. TSLS24 yeast isolated in Vietnam. Scientific Reports, 13(1), 3137. | |
dc.relation.references | Tiwari, S. K., Bhat, S., & Mahato, K. K. (2020). Design and fabrication of low-cost microfluidic channel for biomedical application. Scientific Reports, 10(1), 9215. | |
dc.relation.references | Tiwari, T., Dvivedi, A., & Kumar, P. (2023). On application of tool mimic approach for fabrication of functional surfaces using EDM process. Journal Of The Brazilian Society Of Mechanical Sciences And Engineering, 45(4). https://doi.org/10,1007/s40430-023-04111-2 | |
dc.relation.references | Tsai, H. F., Cheng, J. Y., Chang, H. F., Yamamoto, T., & Shen, A. Q. (2016). Uniform electric field generation in circular multi-well culture plates using polymeric inserts. Scientific reports, 6(1), 26222. | |
dc.relation.references | Tu, J., Qiao, Y., Feng, H., Li, J., Fu, J., Liang, F., & Lu, Z. (2017). PDMS-based microfluidic devices using commoditized PCBs as masters with no specialized equipment required. RSC advances, 7(50), 31603-31609. | |
dc.relation.references | Universidad Nacional de Cuyo. UNCUYO (2017). Teoría de mecánica de fluidos [Conjunto de datos]. En Mecánica de fluidos (Versión V1). https://ingenieria.uncuyo.edu.ar/catedras/apuntes-teoricos-de-mecanica-de-los-fluidos-rev9-doc-prot.pdf | |
dc.relation.references | Uruba, V. (2019, June). Reynolds number in laminar flows and in turbulence. In AIP Conference Proceedings (Vol. 2118, No. 1). AIP Publishing. | |
dc.relation.references | Valdés Parada, F.J. (2021). Mecánica de fluidos Casa de libros abiertos https://www.researchgate.net/profile/Francisco-Valdes-Parada/publication/334451380_Mecanica_de_Fluidos_Notas_de_clase/links/605b9116458515e8346c68f0/Mecanica-de-Fluidos-Notas-de-clase.pdf | |
dc.relation.references | Vu, D. H., Mahboubi, A., Root, A., Heinmaa, I., Taherzadeh, M. J., & Åkesson, D. (2022). Thorough investigation of the effects of cultivation factors on polyhydroalkanoates (PHAs) production by Cupriavidus necator from food waste-derived volatile fatty acids. Fermentation, 8(11), 605. | |
dc.relation.references | Vadlamani, R. A., Dhanabal, A., Detwiler, D. A., Pal, R., McCarthy, J., Seleem, M. N., & Garner, A. L. (2020). Nanosecond electric pulses rapidly enhance the inactivation of Gram-negative bacteria using Gram-positive antibiotics. Applied microbiology and biotechnology, 104, 2217-2227 | |
dc.relation.references | Wang, H., Bhunia, A. K., & Lu, C. (2006). A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosensors And Bioelectronics, 22(5), 582-588. https://doi.org/10,1016/j.bios.2006.01.032 | |
dc.relation.references | Wang, Y.-D., Wei, Z.-J., Tu, H.-R., Zhang, C.-H., & Hou, Z.-P. (2022). Electric field manipulation of magnetic skyrmions. Rare Metals, 1–15. https://doi.org/10,1007/s12598-022-02084-0 | |
dc.relation.references | Weaver, J. C., & Chizmadzhev, Y. A. (1996). Theory of electroporation: a review. Bioelectrochemistry and bioenergetics, 41(2), 135-160, | |
dc.relation.references | Weinor, G. O., Adesina, K. E., Smart, G. M., Wie-Addo, E. K. A., & Benson, W. (2023). Analysis of a Steady MHD Mixed Convection Fluid Flow in a Microchannel within Permeable Walls with Suction and Injection Parameters. Open Access Library Journal, 10(7), 1-9. | |
dc.relation.references | Whitt, P. (2023). Digitizing Your Photos, Slides, and Negatives. In Beginning Photo Retouching and Restoration Using GIMP: Learn to Retouch and Restore Your Photos like a Pro (pp. 31-53). Berkeley, CA: Apress. | |
dc.relation.references | Wibowo, D., Zhao, C. X., & He, Y. (2019). Fluid properties and hydrodynamics of microfluidic systems. In Microfluidics for Pharmaceutical Applications (pp. 37-77). William Andrew Publishing. | |
dc.relation.references | Won, E. J., Thai, D. A., Duong, D. D., Lee, N. Y., & Song, Y. J. (2021). Microfluidic electrical cell lysis for high-throughput and continuous production of cell-free varicella-zoster virus. Journal of Biotechnology, 335, 19-26. | |
dc.relation.references | Wu, X. (2013). Characterization and Application of Self-Assembled Nano-Materials for Fluid Steering and Separation in Microfluidics. | |
dc.relation.references | WWF. (2018). Glosario ambiental: ¿Qué es el plástico? https://www.wwf.org.co/?328912/Glosario-ambiental-Que-es-el-plastico | |
dc.relation.references | Xue, X., Patel, M. K., Kersaudy-Kerhoas, M., Desmulliez, M. P., Bailey, C., & Topham, D. (2012). Analysis of fluid separation in microfluidic T-channels. Applied Mathematical Modelling, 36(2), 743-755. | |
dc.relation.references | Yang, J., Pak, Y. E., & Lee, T. R. (2016). Predicting bifurcation angle effect on blood flow in the microvasculature. Microvascular research, 108, 22-28. | |
dc.relation.references | Yan, Y., Zhou, P., Zhang, S. X., Guo, X. G., & Guo, D. M. (2018). Effect of substrate curvature on thickness distribution of polydimethylsiloxane thin film in spin coating process. Chinese Physics B, 27(6), 068104. | |
dc.relation.references | Yanti, N. A., Sembiring, L., Margino, S., & Muhiddin, N. H. (2013). A study on production of poly-β-hydroxybutyrate bioplastic from sago starch by indigenous amylolytic bacteria. Indonesian Journal of Biotechnology, 18(2), 144-150. | |
dc.relation.references | Yarmush, M. L., Golberg, A., Serša, G., Kotnik, T., & Miklavčič, D. (2014). Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng, 16(1), 295-320. | |
dc.relation.references | Yusupov, V., Churbanov, S., Churbanova, E., Bardakova, K., Antoshin, A., Evlashin, S., ... & Minaev, N. (2020). Laser-induced forward transfer hydrogel printing: a defined route for highly controlled process. International journal of bioprinting, 6(3). | |
dc.relation.references | Zabalo, J. (2019). Integración de microestructuras en dispositivos microfluídicos para la optimización de la interacción tratamientos-monocapa celular en estudios citotóxicos. | |
dc.relation.references | Zavatski, S., Bandarenka, H., & Martin, O. J. (2023). Protein dielectrophoresis with gradient array of conductive electrodes sheds new light on empirical theory. Analytical Chemistry, 95(5), 2958-2966 | |
dc.relation.references | Zhang, L., Zhang, X., & Hua, W. (2022). The Influence of Cross-Sectional Features on Heat Transfer and Flow Characteristics of Microcapsule Phase Change Slurry in Wavy Microchannels. 2022 7th International Conference on Power and Renewable Energy (ICPRE), 1091-1102. | |
dc.relation.references | Zhang, X. C., Guo, Y., Liu, X., Chen, X. G., Wu, Q., & Chen, G. Q. (2018). Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli. Metabolic Engineering, 45, 32-42. | |
dc.relation.references | Zhang, P. (2017). An Insulating Constriction Dielectrophoresis Based Microfluidic Device for Protein Biomolecules Concentration. West Virginia University. | |
dc.relation.references | Zu, Y., Huang, S., Liao, W. C., Lu, Y., & Wang, S. (2014). Gold nanoparticles enhanced electroporation for mammalian cell transfection. Journal of biomedical nanotechnology, 10(6), 982-992. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | http:/purl.org/coar/access_right/c_abf2/ | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Microfluídica | |
dc.subject | Polihidroxialcanoatos | |
dc.subject | Electroporación | |
dc.subject | Campo eléctrico | |
dc.subject.ddc | 610.28 | |
dc.subject.keywords | Microfluidics | |
dc.subject.keywords | Polyhydroxyalkanoates | |
dc.subject.keywords | Electroporation | |
dc.subject.keywords | Electric field | |
dc.title | Prototipo para la aplicación de campos eléctricos integrado a un sistema de cámaras microfluídicas para la lisis celular de bacterias productoras de PHA | |
dc.title.translated | Prototype for the application of electric fields integrated to a microfluidic chamber system for cell lysis of PHA-producing bacteria | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 40.21 MB
- Formato:
- Adobe Portable Document Format
Cargando...
- Nombre:
- Anexo 2 Espectros FTIR.pdf
- Tamaño:
- 794.26 KB
- Formato:
- Adobe Portable Document Format
Cargando...
- Nombre:
- Anexo 3 Manual de usuario.pdf
- Tamaño:
- 2.16 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Acta de aprobacion.pdf
- Tamaño:
- 225.45 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 169.9 KB
- Formato:
- Adobe Portable Document Format
- Descripción: