Plantas colombianas como fuente de principios activos con potencial actividad antiproliferativa frente a carcinoma hepatocelular: una revisión narrativa de la literatura

dc.contributor.advisorMorantes Medina, Sandra Johanna
dc.contributor.advisorDelgado Tiria, Félix Giovanni
dc.contributor.authorPretel Luengas, Geraldine
dc.date.accessioned2025-05-16T16:54:25Z
dc.date.available2025-05-16T16:54:25Z
dc.date.issued2025-04
dc.description.abstractColombia, como segundo país con mayor biodiversidad a nivel mundial, representa una fuente invaluable de nuevos principios activos con potencial terapéutico frente a carcinoma hepatocelular, un tipo de cáncer que aunque no es de los más frecuentes, es necesario investigar nuevas opciones de tratamiento. Este estudio se centró en recopilar y analizar información bibliográfica sobre plantas colombianas con potencial actividad antiproliferativa frente a carcinoma hepatocelular. Empleando algunos elementos de la metodología PRISMA, se identificaron 52 especies de plantas de las cuales, solo 12 demostraron actividad citotóxica significativa frente a hepatocarcinomas. La mayor concentración de estudios se encontró en el departamento de Santander, donde se priorizaron los aceites esenciales, seguidos de extractos y fracciones obtenidas de hojas+tallos. Destacando que, la planta Lippia alba mostró valores de CI50 prometedores (4,3 µg/mL), mientras que la fracción de Annona spraguei Saff. presentó una alta actividad antiproliferativa a 24 horas (CI50 de 11 µg/mL), Estos hallazgos resaltan el potencial de las plantas colombianas en la búsqueda de nuevos agentes terapéuticos contra el cáncer hepático.
dc.description.abstractenglishColombia, as the second most biodiverse country in the world, represents an invaluable source of new active principles with therapeutic potential against hepatocellular carcinoma, a type of cancer that, although it is not one of the most frequent, it is necessary to investigate new treatment options. This study focused on collecting and analyzing bibliographic information on Colombian plants with potential antiproliferative activity against hepatocellular carcinoma. Using some elements of the PRISMA methodology, 52 plant species were identified, of which only 12 showed significant cytotoxic activity against hepatocellular carcinoma. The highest concentration of studies was found in the department of Santander, where priority was given to essential oils, followed by extracts and fractions obtained from leaves + stems. The Lippia alba plant showed promising CI50 values (4.3 µg/mL), while the Annona spraguei Saff. fraction presented high antiproliferative activity at 24 hours (CI50 of 11 µg/mL). These findings highlight the potential of Colombian plants in the search for new therapeutic agents against liver cancer.
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/14371
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.references1. Bystriakova, N., Tovar, C., Monro, A., Moat, J., Hendrigo, P., Carretero, J., ... & Diazgranados, M. (2021). Colombia’s bioregions as a source of useful plants. Plos one, 16(8), e0256457.
dc.relation.references2. Huddart, J. E., Crawford, A. J., Luna-Tapia, A. L., Restrepo, S., & Di Palma, F. (2022). EBP-Colombia and the bioeconomy: Genomics in the service of biodiversity conservation and sustainable development. Proceedings of the National Academy of Sciences, 119(4), e2115641119.
dc.relation.references3. Saboon, Chaudhari, S.K., Arshad, S., Amjad, M.S., Akhtar, M.S. (2019). Natural Compounds Extracted from Medicinal Plants and Their Applications. In: Akhtar, M., Swamy, M., Sinniah, U. (eds) Natural Bio-active Compounds. Volume 1: Production and Applications. Springer, Singapore.193-207.
dc.relation.references4. World Health Organization (2023) Global cancer observatory.https://gco.iarc.fr/
dc.relation.references5. Botero Toro, A., Londoño Sanín, M., & NAVAS NAVAS, M. C. (2007). Epidemiología y factores de riesgo de carcinoma hepatocelular. Iatreia, 20(1), 64-73.
dc.relation.references6. Cendales, D. R. M., & Suárez, L. E. C. (2016). Compuestos citotóxicos de origen vegetal y su relación con proteínas inhibidoras de apoptosis (IAP). Revista Colombiana de Cancerología, 20(3), 124-134.
dc.relation.references7. S. S. Barguil Giraldo (2017) “Bioprospectus: Information fusion and search to support bioproduct development,” Universidad Nacional de Colombia.
dc.relation.references8. Pilon, A. C., Valli, M., Dametto, A. C., Pinto, M. E. F., Freire, R. T., Castro-Gamboa, I., ... & Bolzani, V. S. (2017). NuBBEDB: an updated database to uncover chemical and biological information from Brazilian biodiversity. Scientific Reports, 7(1), 7215.
dc.relation.references9. Caballero-Gallardo, K., Alvarez-Ortega, N., & Olivero-Verbel, J. (2023). Cytotoxicity of Nine Medicinal Plants from San Basilio de Palenque (Colombia) on HepG2 Cells. Plants, 12(14), 2686. https://doi.org/10.3390/plants12142686
dc.relation.references10. Alvarez-Ortega, N., Caballero-Gallardo, K., Juan, C., Juan-Garcia, A., & Olivero-Verbel, J. (2023). Cytoprotective, Antiproliferative, and Anti-Oxidant Potential of the Hydroethanolic Extract of Fridericia chicaLeaves on Human Cancer Cell Lines Exposed to α- and β-Zearalenol. Toxins, 15(1), 36. https://doi.org/10.3390/toxins15010036
dc.relation.references11. Lizcano, L. J., Siles, M., Trepiana, J., Hernández, M. L., Navarro, R., Ruiz-Larrea, M. B., & Ruiz-Sanz, J. I. (2015). Piper and Vismia Species from Colombian Amazonia Differentially Affect Cell Proliferation of Hepatocarcinoma Cells. Nutrients, 7(1), 179-195. https://doi.org/10.3390/nu7010179
dc.relation.references12. Sepúlveda-Arias, J., Jiménez-González, F., Vélez-Gómez, J., Melchor-Moncada, J., & Veloza, L. (2018). Antioxidant, anti-inflammatory, and antiproliferative activity of extracts obtained from Tabebuia Rosea (Bertol.) DC. Pharmacognosy Magazine, 14(55), 25. https://doi.org/10.4103/pm.pm_624_17
dc.relation.references13. Whitted, C., Torrenegra, R., Méndez, G., Lejeune, T., Rodríguez, J., Tsui, H., ... & Palau, V. (2016). Increased cytotoxicity of 3, 5 dihydroxy-7-methoxyflavone in MIA PaCa-2 and Panc28 pancreatic cancer cells when used in conjunction with proliferative compound 3, 5 dihydroxy-7-methoxyflavanone both derived from Chromolaena leivensis (Hieron). Pharmacologyonline, 3, 80-89.
dc.relation.references14. Trepiana, J., Ruiz-Larrea, M. B., & Ruiz-Sanz, J. I. (2018). Unraveling the in vitro antitumor activity of Vismia baccifera against HepG2: role of hydrogen peroxide. Heliyon, 4(6), e00675. https://doi.org/10.1016/j.heliyon.2018.e00675
dc.relation.references15. Aguillón, J., Arango, S. S., Uribe, D. F., & Loango, N. (2018). Cytotoxic and apoptotic activity of extracts from leaves and juice of Passiflora edulis. J Liver Res Disord Ther, 4(2), 67-71.
dc.relation.references16. Velandia, S. A., Quintero, E., Stashenko, E. E., & Ocazionez, R. E. (2018). Actividad antiproliferativa de aceites esenciales de plantas cultivadas en Colombia. Acta Biológica Colombiana, 23(2). https://doi.org/10.15446/abc.v23n2.67394
dc.relation.references17. Zapata, B., Betancur-Galvis, L., Duran, C., & Stashenko, E. (2013). Cytotoxic activity of Asteraceae and Verbenaceae family essential oils. Journal of Essential Oil Research, 26(1), 50–57. https://doi.org/10.1080/10412905.2013.820674
dc.relation.references18. Velandia, S. A., Flechas, M. C., Stashenko, E. E., & Ocazionez, R. E. (2016). Proposal to select essential oils from Colombian plants for research based on its cytotoxicity. Vitae, 23(1), 18–29. https://doi.org/10.17533/vitae.v23n1a03
dc.relation.references19. Barrachina, I., Royo, I., Baldoni, H. A., Chahboune, N., Suvire, F., DePedro, N., Zafra-Polo, M. C., Bermejo, A., Aouad, N. E., Cabedo, N., Saez, J., Tormo, J. R., Enriz, R. D., & Cortes, D. (2007). New antitumoral acetogenin ‘Guanacone type’ derivatives: Isolation and bioactivity. Molecular dynamics simulation of diacetyl-guanacone. Bioorganic & Medicinal Chemistry, 15(13), 4369–4381. https://doi.org/10.1016/j.bmc.2007.04.039
dc.relation.references20. Caballero-Gallardo, K., Quintero-Rincón, P., Stashenko, E. E., & Olivero-Verbel, J. (2022). Photoprotective Agents Obtained from Aromatic Plants Grown in Colombia: Total Phenolic Content, Antioxidant Activity, and Assessment of Cytotoxic Potential in Cancer Cell Lines of Cymbopogon flexuosus L. and Tagetes lucidaCav. Essential Oils. Plants, 11(13), 1693. https://doi.org/10.3390/plants11131693
dc.relation.references21. Hassler, Michael (1994 - 2024): World Plants. Synonymic Checklist and Distribution of the World Flora. Version 24.12; last update December 15th, 2024. - www.worldplants
dc.relation.references22. Corporación Colombiana de Investigación Agropecuaria (Colplanta). (s.f.). Colplanta: Base de datos de plantas de Colombia. Recuperado de https://colplanta.org/
dc.relation.references23. Donato, M. T., Tolosa, L., & Gómez-Lechón, M. J. (2015). Culture and functional characterization of human hepatoma HepG2 cells. Methods in Molecular Biology, 1250, 77-93. https://doi.org/10.1007/978-1-4939-2074-7_5
dc.relation.references24. Tai, Y., Gao, J. H., Zhao, C., Tong, H., Zheng, S. P., Huang, Z. Y., Liu, R., Tang, C. W., & Li, J. (2018). SK-Hep1: not hepatocellular carcinoma cells but a cell model for liver sinusoidal endothelial cells. International journal of clinical and experimental pathology, 11(5), 2931–2938.
dc.relation.references25. Reyes, S. R., Casanova, E. V., Gaona, M. C., & Saldarriaga, C. E. (2010). Identificación preliminar de los metabolitos secundarios de los extractos acuosos y etanólicos del fruto y hojas de Morinda citrifolia L.“noni” y cuantificación espectrofotométrica de los flavonoides totales. ucv-scientia, 2(2), 11-22.
dc.relation.references26. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst. 1991 Jun 5;83(11):757-66. doi: 10.1093/jnci/83.11.757. PMID: 2041050.
dc.relation.references27. Mans, D. R. A., da Rocha, A. B., & Schwartsmann, G. (2007). Anti-cancer drug discovery and development in Brazil: Targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. The Oncologist, 5(3), 185-198. https://doi.org/10.1634/theoncologist.5-3-185
dc.relation.references28. Jantová S, Cipák L, Cernáková M, Kost'álová D. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells. J Pharm Pharmacol. 2003 Aug;55(8):1143-9. doi: 10.1211/002235703322277186. PMID: 12956905.
dc.relation.references29. Zapata, B., Durán, C., Stashenko, E., Correa-Royero, J., & Betancur-Galvis, L. (2009). Actividad citotóxica de aceites esenciales de Lippia origanoides H.B.K. y componentes mayoritarios. Salud UIS, 41(3). Recuperado a partir de https://revistas.uis.edu.co/index.php/revistasaluduis/article/view/680
dc.relation.references30. Berridge, M. V., Herst, P. M., & Tan, A. S. (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology annual review, 11, 127–152. https://doi.org/10.1016/S1387-2656(05)11004-7
dc.relation.references31. García-Granados, R. U., Cruz-Sosa, F., Alarcón-Aguilar, F. J., Nieto-Trujillo, A., & Gallegos-Martínez, M. E. (2019). Análisis fitoquímico cualitativo de los extractos acuosos de Thalassia testudinum Banks ex Köning et Sims de la localidad de Champotón, Campeche, México, durante el ciclo anual 2016-2017. Polibotánica, (48), 151-168. https://doi.org/10.18387/polibotanica.48.12
dc.relation.references32. Ramírez, L., Torres, C., & García, J. (2020). Aceites esenciales y su potencial citotóxico frente a células cancerígenas: una revisión sistemática. Journal of Essential Oil Research, 32(5), 383-392. https://doi.org/10.1080/10412905.2020.1804989
dc.relation.references33. García Uribe, L. P., Marquéz Lázaro, J. P., y Viola Rhenals, M. (2020). Estrés oxidativo, daño al ADN y cáncer. Revista Ciencias Biomédicas, 6(1), 107–117. https://doi.org/10.32997/rcb-2015-2989
dc.relation.references34. Valderrama N, Infraestructura Institucional de Datos e Información (2019). Plantas alimenticias y medicinales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Checklist dataset https://doi.org/10.15472/0bg7iq accessed via GBIF.org on 2024-06-19.
dc.relation.references35. Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613
dc.relation.references36. Wink, M. (2010). Introduction: Biochemistry, physiology, and ecological functions of secondary metabolites. En M. Wink (Ed.), Biochemistry of plant secondary metabolism (pp. 1–19). Wiley-Blackwell. https://doi.org/10.1002/9781444320503.ch1
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPlantas medicinales
dc.subjectBioprospección
dc.subjectAgentes antineoplásicos
dc.subjectCarcinoma hepatocelular
dc.subject.ddc615.19
dc.subject.keywordsMedicinal plants
dc.subject.keywordsBioprospecting
dc.subject.keywordsAntineoplastic agents
dc.subject.keywordsHepatocellular carcinoma
dc.titlePlantas colombianas como fuente de principios activos con potencial actividad antiproliferativa frente a carcinoma hepatocelular: una revisión narrativa de la literatura
dc.title.translatedColombian plants as a source of active principles with potential antiproliferative activity against hepatocellular carcinoma: a narrative review of the literature
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Trabajo de grado.pdf
Tamaño:
1.42 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
124.91 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Anexo 1 Acta de aprobacion.pdf
Tamaño:
3.07 MB
Formato:
Adobe Portable Document Format
Descripción: