Plantas colombianas como fuente de principios activos con potencial actividad antiproliferativa frente a carcinoma hepatocelular: una revisión narrativa de la literatura
dc.contributor.advisor | Morantes Medina, Sandra Johanna | |
dc.contributor.advisor | Delgado Tiria, Félix Giovanni | |
dc.contributor.author | Pretel Luengas, Geraldine | |
dc.date.accessioned | 2025-05-16T16:54:25Z | |
dc.date.available | 2025-05-16T16:54:25Z | |
dc.date.issued | 2025-04 | |
dc.description.abstract | Colombia, como segundo país con mayor biodiversidad a nivel mundial, representa una fuente invaluable de nuevos principios activos con potencial terapéutico frente a carcinoma hepatocelular, un tipo de cáncer que aunque no es de los más frecuentes, es necesario investigar nuevas opciones de tratamiento. Este estudio se centró en recopilar y analizar información bibliográfica sobre plantas colombianas con potencial actividad antiproliferativa frente a carcinoma hepatocelular. Empleando algunos elementos de la metodología PRISMA, se identificaron 52 especies de plantas de las cuales, solo 12 demostraron actividad citotóxica significativa frente a hepatocarcinomas. La mayor concentración de estudios se encontró en el departamento de Santander, donde se priorizaron los aceites esenciales, seguidos de extractos y fracciones obtenidas de hojas+tallos. Destacando que, la planta Lippia alba mostró valores de CI50 prometedores (4,3 µg/mL), mientras que la fracción de Annona spraguei Saff. presentó una alta actividad antiproliferativa a 24 horas (CI50 de 11 µg/mL), Estos hallazgos resaltan el potencial de las plantas colombianas en la búsqueda de nuevos agentes terapéuticos contra el cáncer hepático. | |
dc.description.abstractenglish | Colombia, as the second most biodiverse country in the world, represents an invaluable source of new active principles with therapeutic potential against hepatocellular carcinoma, a type of cancer that, although it is not one of the most frequent, it is necessary to investigate new treatment options. This study focused on collecting and analyzing bibliographic information on Colombian plants with potential antiproliferative activity against hepatocellular carcinoma. Using some elements of the PRISMA methodology, 52 plant species were identified, of which only 12 showed significant cytotoxic activity against hepatocellular carcinoma. The highest concentration of studies was found in the department of Santander, where priority was given to essential oils, followed by extracts and fractions obtained from leaves + stems. The Lippia alba plant showed promising CI50 values (4.3 µg/mL), while the Annona spraguei Saff. fraction presented high antiproliferative activity at 24 hours (CI50 of 11 µg/mL). These findings highlight the potential of Colombian plants in the search for new therapeutic agents against liver cancer. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreelevel | Químico Farmacéutico | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/14371 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Química Farmacéutica | spa |
dc.relation.references | 1. Bystriakova, N., Tovar, C., Monro, A., Moat, J., Hendrigo, P., Carretero, J., ... & Diazgranados, M. (2021). Colombia’s bioregions as a source of useful plants. Plos one, 16(8), e0256457. | |
dc.relation.references | 2. Huddart, J. E., Crawford, A. J., Luna-Tapia, A. L., Restrepo, S., & Di Palma, F. (2022). EBP-Colombia and the bioeconomy: Genomics in the service of biodiversity conservation and sustainable development. Proceedings of the National Academy of Sciences, 119(4), e2115641119. | |
dc.relation.references | 3. Saboon, Chaudhari, S.K., Arshad, S., Amjad, M.S., Akhtar, M.S. (2019). Natural Compounds Extracted from Medicinal Plants and Their Applications. In: Akhtar, M., Swamy, M., Sinniah, U. (eds) Natural Bio-active Compounds. Volume 1: Production and Applications. Springer, Singapore.193-207. | |
dc.relation.references | 4. World Health Organization (2023) Global cancer observatory.https://gco.iarc.fr/ | |
dc.relation.references | 5. Botero Toro, A., Londoño Sanín, M., & NAVAS NAVAS, M. C. (2007). Epidemiología y factores de riesgo de carcinoma hepatocelular. Iatreia, 20(1), 64-73. | |
dc.relation.references | 6. Cendales, D. R. M., & Suárez, L. E. C. (2016). Compuestos citotóxicos de origen vegetal y su relación con proteínas inhibidoras de apoptosis (IAP). Revista Colombiana de Cancerología, 20(3), 124-134. | |
dc.relation.references | 7. S. S. Barguil Giraldo (2017) “Bioprospectus: Information fusion and search to support bioproduct development,” Universidad Nacional de Colombia. | |
dc.relation.references | 8. Pilon, A. C., Valli, M., Dametto, A. C., Pinto, M. E. F., Freire, R. T., Castro-Gamboa, I., ... & Bolzani, V. S. (2017). NuBBEDB: an updated database to uncover chemical and biological information from Brazilian biodiversity. Scientific Reports, 7(1), 7215. | |
dc.relation.references | 9. Caballero-Gallardo, K., Alvarez-Ortega, N., & Olivero-Verbel, J. (2023). Cytotoxicity of Nine Medicinal Plants from San Basilio de Palenque (Colombia) on HepG2 Cells. Plants, 12(14), 2686. https://doi.org/10.3390/plants12142686 | |
dc.relation.references | 10. Alvarez-Ortega, N., Caballero-Gallardo, K., Juan, C., Juan-Garcia, A., & Olivero-Verbel, J. (2023). Cytoprotective, Antiproliferative, and Anti-Oxidant Potential of the Hydroethanolic Extract of Fridericia chicaLeaves on Human Cancer Cell Lines Exposed to α- and β-Zearalenol. Toxins, 15(1), 36. https://doi.org/10.3390/toxins15010036 | |
dc.relation.references | 11. Lizcano, L. J., Siles, M., Trepiana, J., Hernández, M. L., Navarro, R., Ruiz-Larrea, M. B., & Ruiz-Sanz, J. I. (2015). Piper and Vismia Species from Colombian Amazonia Differentially Affect Cell Proliferation of Hepatocarcinoma Cells. Nutrients, 7(1), 179-195. https://doi.org/10.3390/nu7010179 | |
dc.relation.references | 12. Sepúlveda-Arias, J., Jiménez-González, F., Vélez-Gómez, J., Melchor-Moncada, J., & Veloza, L. (2018). Antioxidant, anti-inflammatory, and antiproliferative activity of extracts obtained from Tabebuia Rosea (Bertol.) DC. Pharmacognosy Magazine, 14(55), 25. https://doi.org/10.4103/pm.pm_624_17 | |
dc.relation.references | 13. Whitted, C., Torrenegra, R., Méndez, G., Lejeune, T., Rodríguez, J., Tsui, H., ... & Palau, V. (2016). Increased cytotoxicity of 3, 5 dihydroxy-7-methoxyflavone in MIA PaCa-2 and Panc28 pancreatic cancer cells when used in conjunction with proliferative compound 3, 5 dihydroxy-7-methoxyflavanone both derived from Chromolaena leivensis (Hieron). Pharmacologyonline, 3, 80-89. | |
dc.relation.references | 14. Trepiana, J., Ruiz-Larrea, M. B., & Ruiz-Sanz, J. I. (2018). Unraveling the in vitro antitumor activity of Vismia baccifera against HepG2: role of hydrogen peroxide. Heliyon, 4(6), e00675. https://doi.org/10.1016/j.heliyon.2018.e00675 | |
dc.relation.references | 15. Aguillón, J., Arango, S. S., Uribe, D. F., & Loango, N. (2018). Cytotoxic and apoptotic activity of extracts from leaves and juice of Passiflora edulis. J Liver Res Disord Ther, 4(2), 67-71. | |
dc.relation.references | 16. Velandia, S. A., Quintero, E., Stashenko, E. E., & Ocazionez, R. E. (2018). Actividad antiproliferativa de aceites esenciales de plantas cultivadas en Colombia. Acta Biológica Colombiana, 23(2). https://doi.org/10.15446/abc.v23n2.67394 | |
dc.relation.references | 17. Zapata, B., Betancur-Galvis, L., Duran, C., & Stashenko, E. (2013). Cytotoxic activity of Asteraceae and Verbenaceae family essential oils. Journal of Essential Oil Research, 26(1), 50–57. https://doi.org/10.1080/10412905.2013.820674 | |
dc.relation.references | 18. Velandia, S. A., Flechas, M. C., Stashenko, E. E., & Ocazionez, R. E. (2016). Proposal to select essential oils from Colombian plants for research based on its cytotoxicity. Vitae, 23(1), 18–29. https://doi.org/10.17533/vitae.v23n1a03 | |
dc.relation.references | 19. Barrachina, I., Royo, I., Baldoni, H. A., Chahboune, N., Suvire, F., DePedro, N., Zafra-Polo, M. C., Bermejo, A., Aouad, N. E., Cabedo, N., Saez, J., Tormo, J. R., Enriz, R. D., & Cortes, D. (2007). New antitumoral acetogenin ‘Guanacone type’ derivatives: Isolation and bioactivity. Molecular dynamics simulation of diacetyl-guanacone. Bioorganic & Medicinal Chemistry, 15(13), 4369–4381. https://doi.org/10.1016/j.bmc.2007.04.039 | |
dc.relation.references | 20. Caballero-Gallardo, K., Quintero-Rincón, P., Stashenko, E. E., & Olivero-Verbel, J. (2022). Photoprotective Agents Obtained from Aromatic Plants Grown in Colombia: Total Phenolic Content, Antioxidant Activity, and Assessment of Cytotoxic Potential in Cancer Cell Lines of Cymbopogon flexuosus L. and Tagetes lucidaCav. Essential Oils. Plants, 11(13), 1693. https://doi.org/10.3390/plants11131693 | |
dc.relation.references | 21. Hassler, Michael (1994 - 2024): World Plants. Synonymic Checklist and Distribution of the World Flora. Version 24.12; last update December 15th, 2024. - www.worldplants | |
dc.relation.references | 22. Corporación Colombiana de Investigación Agropecuaria (Colplanta). (s.f.). Colplanta: Base de datos de plantas de Colombia. Recuperado de https://colplanta.org/ | |
dc.relation.references | 23. Donato, M. T., Tolosa, L., & Gómez-Lechón, M. J. (2015). Culture and functional characterization of human hepatoma HepG2 cells. Methods in Molecular Biology, 1250, 77-93. https://doi.org/10.1007/978-1-4939-2074-7_5 | |
dc.relation.references | 24. Tai, Y., Gao, J. H., Zhao, C., Tong, H., Zheng, S. P., Huang, Z. Y., Liu, R., Tang, C. W., & Li, J. (2018). SK-Hep1: not hepatocellular carcinoma cells but a cell model for liver sinusoidal endothelial cells. International journal of clinical and experimental pathology, 11(5), 2931–2938. | |
dc.relation.references | 25. Reyes, S. R., Casanova, E. V., Gaona, M. C., & Saldarriaga, C. E. (2010). Identificación preliminar de los metabolitos secundarios de los extractos acuosos y etanólicos del fruto y hojas de Morinda citrifolia L.“noni” y cuantificación espectrofotométrica de los flavonoides totales. ucv-scientia, 2(2), 11-22. | |
dc.relation.references | 26. Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst. 1991 Jun 5;83(11):757-66. doi: 10.1093/jnci/83.11.757. PMID: 2041050. | |
dc.relation.references | 27. Mans, D. R. A., da Rocha, A. B., & Schwartsmann, G. (2007). Anti-cancer drug discovery and development in Brazil: Targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. The Oncologist, 5(3), 185-198. https://doi.org/10.1634/theoncologist.5-3-185 | |
dc.relation.references | 28. Jantová S, Cipák L, Cernáková M, Kost'álová D. Effect of berberine on proliferation, cell cycle and apoptosis in HeLa and L1210 cells. J Pharm Pharmacol. 2003 Aug;55(8):1143-9. doi: 10.1211/002235703322277186. PMID: 12956905. | |
dc.relation.references | 29. Zapata, B., Durán, C., Stashenko, E., Correa-Royero, J., & Betancur-Galvis, L. (2009). Actividad citotóxica de aceites esenciales de Lippia origanoides H.B.K. y componentes mayoritarios. Salud UIS, 41(3). Recuperado a partir de https://revistas.uis.edu.co/index.php/revistasaluduis/article/view/680 | |
dc.relation.references | 30. Berridge, M. V., Herst, P. M., & Tan, A. S. (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology annual review, 11, 127–152. https://doi.org/10.1016/S1387-2656(05)11004-7 | |
dc.relation.references | 31. García-Granados, R. U., Cruz-Sosa, F., Alarcón-Aguilar, F. J., Nieto-Trujillo, A., & Gallegos-Martínez, M. E. (2019). Análisis fitoquímico cualitativo de los extractos acuosos de Thalassia testudinum Banks ex Köning et Sims de la localidad de Champotón, Campeche, México, durante el ciclo anual 2016-2017. Polibotánica, (48), 151-168. https://doi.org/10.18387/polibotanica.48.12 | |
dc.relation.references | 32. Ramírez, L., Torres, C., & García, J. (2020). Aceites esenciales y su potencial citotóxico frente a células cancerígenas: una revisión sistemática. Journal of Essential Oil Research, 32(5), 383-392. https://doi.org/10.1080/10412905.2020.1804989 | |
dc.relation.references | 33. García Uribe, L. P., Marquéz Lázaro, J. P., y Viola Rhenals, M. (2020). Estrés oxidativo, daño al ADN y cáncer. Revista Ciencias Biomédicas, 6(1), 107–117. https://doi.org/10.32997/rcb-2015-2989 | |
dc.relation.references | 34. Valderrama N, Infraestructura Institucional de Datos e Información (2019). Plantas alimenticias y medicinales de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Checklist dataset https://doi.org/10.15472/0bg7iq accessed via GBIF.org on 2024-06-19. | |
dc.relation.references | 35. Akula, R., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6(11), 1720–1731. https://doi.org/10.4161/psb.6.11.17613 | |
dc.relation.references | 36. Wink, M. (2010). Introduction: Biochemistry, physiology, and ecological functions of secondary metabolites. En M. Wink (Ed.), Biochemistry of plant secondary metabolism (pp. 1–19). Wiley-Blackwell. https://doi.org/10.1002/9781444320503.ch1 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Plantas medicinales | |
dc.subject | Bioprospección | |
dc.subject | Agentes antineoplásicos | |
dc.subject | Carcinoma hepatocelular | |
dc.subject.ddc | 615.19 | |
dc.subject.keywords | Medicinal plants | |
dc.subject.keywords | Bioprospecting | |
dc.subject.keywords | Antineoplastic agents | |
dc.subject.keywords | Hepatocellular carcinoma | |
dc.title | Plantas colombianas como fuente de principios activos con potencial actividad antiproliferativa frente a carcinoma hepatocelular: una revisión narrativa de la literatura | |
dc.title.translated | Colombian plants as a source of active principles with potential antiproliferative activity against hepatocellular carcinoma: a narrative review of the literature | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 1.42 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 124.91 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Acta de aprobacion.pdf
- Tamaño:
- 3.07 MB
- Formato:
- Adobe Portable Document Format
- Descripción: