Diseño de un péptido con actividad antibiótica selectiva derivado de la Miotoxina II presente en el veneno de la serpiente Bothrops Asper mediante diseño racional in silico y evaluación de su capacidad antibiótica
dc.contributor.advisor | Guevara Pulido, James Oswaldo | |
dc.contributor.author | Huertas Gómez, Laura Tatiana | |
dc.date.accessioned | 2024-11-20T02:50:25Z | |
dc.date.available | 2024-11-20T02:50:25Z | |
dc.date.issued | 2024-11 | |
dc.description.abstract | La resistencia bacteriana es una preocupación de salud pública, especialmente ante patógenos reportados como prioritarios por la OMS, como Escherichia coli resistente a carbapenémicos [1]. Como alternativa a los antibióticos actuales, las toxinas animales han suscitado un notable interés. Este trabajo realiza el diseño racional de un péptido antibiótico derivado de la secuencia 115-129 de la Miotoxina II, presente en el veneno de la serpiente Bothrops asper [2]. Se realizaron 20 modificaciones a la secuencia original 115-129 mediante docking molecular, identificando al péptido KHWYKHYRH como el de mejor energía de afinidad (-7.6 kcal/mol) hacia el lipopolisacárido (LPS). El perfil de toxicidad del péptido análogo realizado mediante ADMETlab 3.0 sugirió bajas probabilidades de cardiotoxicidad (0.047), mutagenicidad (0.136) y carcinogenicidad (0.0). Finalmente, los ensayos de difusión en agar no mostraron actividad antibacteriana significativa. No obstante, se sugiere que la protonación del péptido podría potenciar su efectividad. Adicionalmente, el desarrollo de un sistema de liberación del péptido podría optimizar su permeabilidad a través de la membrana bacteriana. | |
dc.description.abstractenglish | Bacterial resistance is a public health concern, especially against pathogens reported as priority by the WHO, such as carbapenem-resistant Escherichia coli [1]. As an alternative to current antibiotics, animal toxins have aroused considerable interest. This work performs the rational design of an antibiotic peptide derived from the sequence 115-129 of Myotoxin II, present in the venom of the snake Bothrops asper [2]. Twenty modifications were made to the original sequence 115-129 by molecular docking, identifying the peptide KHWYKHYRH as the one with the best affinity energy (-7.6 kcal/mol) towards lipopolysaccharide (LPS). The toxicity profile of the analogous peptide performed using ADMETlab 3.0 suggested low probabilities of cardiotoxicity (0.047), mutagenicity (0.136) and carcinogenicity (0.0). Finally, agar diffusion assays did not show significant antibacterial activity. However, it is suggested that protonation of the peptide could enhance its effectiveness. Additionally, the development of a peptide delivery system could optimize its permeability through the bacterial membrane. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreelevel | Químico Farmacéutico | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13262 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Química Farmacéutica | spa |
dc.relation.references | 1. Ministerio de Salud y Protección Social. Estado del arte. “Protocolo de Vigilancia de Resistencia bacteriana a los antimicrobianos en al ámbito hospitalario INS”, 2022, pp. 5-7. | |
dc.relation.references | 2. Lomonte, Bruno, Yamileth Angulo, and Edgardo Moreno. "Synthetic peptides derived from the C-terminal region of Lys49 phospholipase A2 homologues from viperidae snake venoms: biomimetic activities and potential applications." Current Pharmaceutical Design 16, 3224-3230, 2010, pp. 1-5. | |
dc.relation.references | 3. Mancuso, Giuseppe, et al. "Bacterial antibiotic resistance: the most critical pathogens." Pathogens 10.10, 2021, pp. 1-4. | |
dc.relation.references | 4. Ventola, C. Lee. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics, 2015, vol. 40, no 4, pp. 277–283. | |
dc.relation.references | 5. Antimicrobial resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 10-08-2024). | |
dc.relation.references | 6. About Antimicrobial Resistance. Available online: https://www.cdc.gov/antimicrobial-resistance/about/index.html (accessed on 10-08-2024). | |
dc.relation.references | 7. Resistencia a los antimicrobianos. Available online: https://www.who.int/es/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 12-08-2024). | |
dc.relation.references | 8. Beltrán Toca, Lina María. "Costo económico de las bacteriemias causadas por enterobacterias resistentes a carbapenémicos en una institución de Bogotá, 2020, pp. 2-10. | |
dc.relation.references | 9. Alam, Md Iqbal, et al. "Therapeutic potential of snake venoms as antimicrobial agents." Front. Drug Chem. Clin. Res 2, 2019, pp. 1-9. | |
dc.relation.references | 10. Pablo Gutiérrez, Sergio Orduz. “ANTIMICROBIAL PEPTIDES: STRUCTURE, FUNCTION AND APPLICATIONS”, 2003, pp. 1-12. | |
dc.relation.references | 11. Tsai, Shu-Huei, et al. "Binding of a venom Lys-49 phospholipase A2 to LPS and suppression of its effects on mouse macrophages." Toxicon 50.7, 2007, pp. 1-9. | |
dc.relation.references | 12. Fan, Jiyu, Ailing Fu, and Le Zhang. "Progress in molecular docking." Quantitative Biology 7, 2019, pp. 83-89. | |
dc.relation.references | 13. Yu, Hui‐Yuan, et al. "Rational design of tryptophan‐rich antimicrobial peptides with enhanced antimicrobial activities and specificities." Chembiochem 11.16, 2010, pp. 2273-2282. | |
dc.relation.references | 14. CRYSTAL STRUCTURE OF A CALCIUM-INDEPENDENT PHOSPHOLIPASELIKE MYOTOXIC PROTEIN FROM BOTHROPS ASPER VENOM Available online: https://www.rcsb.org/structure/1CLP (accessed on 13-08-2024). | |
dc.relation.references | 15. Páramo, Leandro, et al. "Bactericidal activity of Lys49 and Asp49 myotoxic phospholipases A2 from Bothrops asper snake venom: Synthetic Lys49 myotoxin II‐(115− 129)‐peptide identifies its bactericidal region." European Journal of Biochemistry 253.2, 1998, pp. 452-461. | |
dc.relation.references | 16. Lipopolysaccharide. Available online: https://www.chemspider.com/Chemical-Structure.10143547.html?rid=a3391afa-dd2b-43b1-8ca0-7af777e6405b&page_num=0 (accessed on 20-08-2024). | |
dc.relation.references | 17. Marcus D Hanwell, Donald E Curtis, David C Lonie, Tim Vandermeersch, Eva Zurek and Geoffrey R Hutchison; “Avogadro: An advanced semantic chemical editor, visualization, and analysis platform” Journal of Cheminformatics, 2012. | |
dc.relation.references | 18. Li Fu, Shaohua Shi, Jiacai Yi, Ningning Wang, Yuanhang He, Zhenxing Wu, Jinfu Peng, Youchao Deng, Wenxuan Wang, Chengkun Wu, Aiping Lyu, Xiangxiang Zeng, Wentao Zhao, Tingjun Hou, Dongsheng Cao, ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support, Nucleic Acids Research, Volume 52, Issue W1, 2024, pp. W422–W431, https://doi.org/10.1093/nar/gkae236 | |
dc.relation.references | 19. Amirkhanov, N. V., et al. "Synthetic antimicrobial peptides: III—Effect of cationic groups of lysine, arginine, and histidine on antimicrobial activity of peptides with a linear type of amphipathicity." Russian Journal of Bioorganic Chemistry 47.3, 2021, pp. 681-690. | |
dc.relation.references | 20. Khandelia, Himanshu, and Yiannis N. Kaznessis. "Cation− π interactions stabilize the structure of the antimicrobial peptide indolicidin near membranes: molecular dynamics simulations." The Journal of Physical Chemistry B 111.1, 2007, pp. 242-250. | |
dc.relation.references | 21. Liao, Si-Ming, et al. "The multiple roles of histidine in protein interactions." Chemistry Central Journal 7, 2013, pp. 1-12. | |
dc.relation.references | 22. Dong, Weibing, et al. "Potential role of a series of lysine-/leucine-rich antimicrobial peptide in inhibiting lipopolysaccharide-induced inflammation." Biochemical Journal 475.22, 2018, pp. 3687-3706. | |
dc.relation.references | 23. Pletneva, Ekaterina V., et al. "The Role of Cation− π Interactions in Biomolecular Association. Design of Peptides Favoring Interactions between Cationic and Aromatic Amino Acid Side Chains." Journal of the American Chemical Society 123.26, 2001, pp. 6232-6245. | |
dc.relation.references | 24. Granja del Río, Alejandra. "Estudio electrofisiológico de canales Herg en células de cáncer de colón.", 2013. | |
dc.relation.references | 25. Valenti, Giulia E., et al. "Antimicrobial peptides and cationic nanoparticles: a broad-spectrum weapon to fight multi-drug resistance not only in bacteria." International journal of molecular sciences 23.11, 2022, p. 6108. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | http:/purl.org/coar/access_right/c_abf2/ | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Resistencia bacteriana | |
dc.subject | Escherichia coli | |
dc.subject | Miotoxina II | |
dc.subject | Antibiótico | |
dc.subject | Docking molecular | |
dc.subject | Lipopolisacárido | |
dc.subject.ddc | 615.19 | |
dc.subject.keywords | Bacterial resistance | |
dc.subject.keywords | Escherichia coli | |
dc.subject.keywords | Myotoxin II | |
dc.subject.keywords | Antibiotic | |
dc.subject.keywords | Molecular docking | |
dc.subject.keywords | Lipopolysaccharide | |
dc.title | Diseño de un péptido con actividad antibiótica selectiva derivado de la Miotoxina II presente en el veneno de la serpiente Bothrops Asper mediante diseño racional in silico y evaluación de su capacidad antibiótica | |
dc.title.translated | Design of a peptide with selective antibiotic activity derived from Myotoxin II present in the venom of the snake Bothrops Asper through rational in silico design and evaluation of its antibiotic capacity | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 1.06 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Acta de aprobacion.pdf
- Tamaño:
- 1.32 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 327.9 KB
- Formato:
- Adobe Portable Document Format
- Descripción: