Manejo terapéutico conservador de quistes odontogénicos mediante descompresión activa: análisis mediante radiografía panorámicas

dc.contributor.advisorArango Fernández, Hernán Guillermo
dc.contributor.advisorGamboa Hernández, Carolina
dc.contributor.advisorTocora Rodriguez, Juan Camilo
dc.contributor.authorCarrascal Villalba, Bryan Luis
dc.contributor.authorZambrano Coronel, José Federico
dc.date.accessioned2025-08-11T20:51:21Z
dc.date.available2025-08-11T20:51:21Z
dc.date.issued2025-08
dc.description.abstractAntecedentes: Los quistes odontogénicos son cavidades patológicas recubiertas por epitelio que se desarrollan en los maxilares, cuyo crecimiento puede causar reabsorción ósea y desplazamiento dentario. La descompresión activa es una técnica conservadora que busca reducir el volumen de estas lesiones mediante la aplicación de presión negativa, favoreciendo la regeneración ósea y evitando cirugías invasivas. Objetivo: Describir la evolución radiográfica del tamaño de los quistes odontogénicos tratados mediante descompresión activa en cuatro casos clínicos. Metodología: Se realizó un estudio retrospectivo tipo serie de casos. Se analizaron radiografías panorámicas secuenciales (inicial, a los 3 y a los 6 meses) de cuatro pacientes tratados en una clínica odontológica en Barranquilla entre 2019 y 2023 con el dispositivo Hemovac (Evocyst). Se midieron las dimensiones de los quistes usando software digital para evaluar la reducción de tamaño. Resultados: En todos los casos se observó una disminución progresiva en las dimensiones de los quistes. Los quistes de tamaño moderado presentaron una reducción más rápida, mientras que los más grandes mostraron una disminución más gradual. El porcentaje de reducción varió entre 40% y 87%, según el tamaño inicial de la lesión. Conclusión: En esta serie de casos, la descompresión activa con Hemovac (Evocyst) se asoció con una reducción progresiva del tamaño de los quistes odontogénicos, lo que sugiere que podría ser una técnica mínimamente invasiva y conservadora útil en el manejo de estas lesiones. Estos hallazgos preliminares respaldan su uso en casos seleccionados, especialmente en lesiones grandes o en zonas anatómicamente complejas, aunque se requieren estudios con mayor tamaño de muestra y diseño analítico para confirmar su eficacia.
dc.description.abstractenglishBackground: Odontogenic cysts are pathological cavities covered by epithelium that develop in the maxillary bones, whose growth can cause bone resorption and tooth displacement. Active decompression is a conservative technique that seeks to reduce the volume of these lesions by applying negative pressure, promoting bone regeneration, and avoiding radical bone resections. Aim: To describe the radiographic evolution of the size of odontogenic cysts treated by active decompression in four clinical cases. Methods: A retrospective case series study was conducted. Sequential panoramic radiographs (initial, at 3 and 6 months) of four patients treated at a dental clinic in the city of Barranquilla between 2019 and 2023 with the Hemovac (Evocyst) device were analyzed. The dimensions of the cysts were measured using digital software to assess size reduction. Results: In all cases, a progressive decrease in cyst dimensions was observed. Moderate-sized cysts showed a more rapid reduction, while larger cysts showed a more gradual decrease. The percentage of reduction varied between 40% and 87%, depending on the initial size of the lesion. Conclusions: In this series of cases, active decompression with Hemovac (Evocyst) was associated with a progressive reduction in the size of odontogenic cysts, suggesting that it could be a useful, minimally invasive, and conservative technique in the management of these lesions. These preliminary findings support its use in selected cases, especially in large lesions or anatomically complex areas. However, studies with larger sample sizes and analytical designs are needed to confirm its efficacy.
dc.description.degreelevelEspecializaciónspa
dc.description.degreenameEspecialista en cirugía oral y maxilofacialspa
dc.description.sponsorshipSOMECA Clínica Odontológicas
dc.description.sponsorshipGrupo de Investigación UNIECLO – Unidad de Epidemiología Clínica Oral
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/15696
dc.language.isoes
dc.publisher.facultyFacultad de Odontologíaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programEspecialización en cirugía oral y maxilofacialspa
dc.relation.references1. Dhanuthai K, Chantarangsu S, Klanrit P, Chamusri N, Aminishakib P, Khoozestani NK, et al. Cysts of the jaws: a multicentre study. Oral Dis. 2024;30:2347–54. Available from: https://doi.org/10.1111/odi.14722
dc.relation.references2. Castro-Núñez J, Wiscovitch AG, Porte JP, Wiscovitch J, Rivera B, Guerrero LM. Does active decompression of odontogenic keratocyst change the histologic diagnosis? Oral Maxillofac Surg. 2022;26:291–8. Available from: https://doi.org/10.1007/s10006-021-00994-4
dc.relation.references3. Rioux-Forker D, Deziel AC, Williams LS, Muzaffar AR. Odontogenic cysts and tumors. Ann Plast Surg. 2019;82(4):469–77. Available from: https://doi.org/10.1097/SAP.0000000000001738
dc.relation.references4. Talpos-Niculescu RM, Popa M, Rusu LC, Pricop MO, Nica LM, Talpos-Niculescu S. Conservative approach in the management of large periapical cyst-like lesions: a report of two cases. Medicina (Kaunas). 2021;57(5):497. Available from: https://doi.org/10.3390/medicina57050497
dc.relation.references5. Trujillo-Saldarriaga S, Cuéllar MA, Alfaro-Portillo C, Moreno-Rodríguez P, Gómez-Delgado A, Castro-Núñez J. Potential role of active decompression with distraction sugosteogenesis for the management of odontogenic cystic lesions: a retrospective review of 10 cases. Oral Maxillofac Surg [Internet]. 2022;26(2):239–45. Available from: https://doi.org/10.1007/s10006-021-00970-y
dc.relation.references6. Ochoa Moreira JA, Reinoso Quezada SJ, Molina-Barahona M. Técnicas para el tratamiento del queratoquiste: revisión de la literatura y presentación de un caso. Rev Cient Odontol. 2023;11(2):e159. Available from: https://doi.org/10.21142/2523-2754-1102-2023-159
dc.relation.references7. Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development. 2010;137(16):2605–21. Available from: https://doi.org/10.1242/dev.040048
dc.relation.references8. Graham A. Development of the pharyngeal arches. Am J Med Genet A. 2003;119A(3):251–6. Available from: https://doi.org/10.1002/ajmg.a.10980
dc.relation.references9. Carlson DS. Craniofacial embryogenetics and development. Am J Orthod Dentofac Orthop [Internet]. 2019;155(6):897–8. Available from: https://doi.org/10.1016/j.ajodo.2019.04.001
dc.relation.references10. Rodríguez-Vázquez JF, Mérida-Velasco JR, Verdugo-López S, Sánchez-Montesinos I, Mérida-Velasco JA. Morphogenesis of the second pharyngeal arch cartilage (Reichert’s cartilage) in human embryos. J Anat. 2006;208(2):179–89. Available from: https://doi.org/10.1111/j.1469-7580.2006.00524.x
dc.relation.references11. Graham A, Poopalasundaram S, Shone V, Kiecker C. A reappraisal and revision of the numbering of the pharyngeal arches. J Anat. 2019;235(6):1019–23. Available from: https://doi.org/10.1111/joa.13067
dc.relation.references12. Nolla CM. The development of the permanent teeth. J Dent Child. 1960;27(4):254–66. Available from: https://doi.org/10.1021/ba-1977-0164.ch002
dc.relation.references13. Manlove AE, Romeo G, Venugopalan SR. Craniofacial Growth: Current Theories and Influence on Management. Oral Maxillofac Surg Clin North Am [Internet]. 2020;32(2):167–75. Available from: https://doi.org/10.1016/j.coms.2020.01.007
dc.relation.references14. Stutzmann JJ, Petrovic AG. Role of the lateral pterygoid muscle and meniscotemporomandibular frenum in spontaneous growth of the mandible and in growth stimulated by the postural hyperpropulsor. Am J Orthod Dentofac Orthop. 1990;97(5):381–92. Available from: https://doi.org/10.1016/0889-5406(90)70110-X
dc.relation.references15. Chai Y, Maxson RE. Recent advances in craniofacial morphogenesis. Dev Dyn. 2006;235(9):2353–75. Available from: https://doi.org/10.1002/dvdy.20833
dc.relation.references16. Camargo D, Rocio E, Gamboa O, Ariel E, Murillo T. Theories of craniofacial growth : a literature review Theories of craniofacial growth : a literature review . Theor Craneofacial Growth a Lit Rev. 2017;78–88. Available from: http://dx.doi.org/10.15332/us.v16i0.2022
dc.relation.references17. Yu T, Klein OD. Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development. 2020;147(2):dev184754. Available from: https://doi.org/10.1242/dev.184754
dc.relation.references18. Qiu T, Teshima THN, Hovorakova M, Tucker AS. Development of the vestibular lamina in human embryos: morphogenesis and vestibule formation. Front Physiol. 2020;11:753. Available from: https://doi.org/10.3389/fphys.2020.00753
dc.relation.references19. Puthiyaveetil JSV, Kota K, Chakkarayan R, Chakkarayan J, Thodiyil AKP. Epithelial–mesenchymal interactions in tooth development and the significant role of growth factors and genes with emphasis on mesenchyme: a review. J Clin Diagn Res. 2016;10(9):ZE05–9. Available from: https://doi.org/10.7860/JCDR/2016/21719.8502
dc.relation.references20. Wang Y, Li L, Zheng Y, Yuan G, Yang G, He F, et al. BMP activity is required for tooth development from the lamina to bud stage. J Dent Res. 2012;91(7):690–5. Available from: https://doi.org/10.1177/0022034512448660
dc.relation.references21. Balic A, Thesleff I. Tissue Interactions Regulating Tooth Development and Renewal [Internet]. 1st ed. Vol. 115, Current Topics in Developmental Biology. Elsevier Inc.; 2015. 157–186 p. Available from: http://dx.doi.org/10.1016/bs.ctdb.2015.07.006
dc.relation.references22. Hovorakova M, Lesot H, Peterka M, Peterkova R. The developmental relationship between the deciduous dentition and the oral vestibule in human embryos. Anat Embryol (Berl). 2005;209(4):303–13. Available from: https://doi.org/10.1007/s00429-004-0441-y
dc.relation.references23. He P, Zhang Y, Kim SO, Radlanski RJ, Butcher K, Schneider RA, et al. Ameloblast differentiation in the human developing tooth: Effects of extracellular matrices. Matrix Biol [Internet]. 2010;29(5):411–9. Available from: http://dx.doi.org/10.1016/j.matbio.2010.03.001
dc.relation.references24. Kim TH, Bae CH, Lee JC, Ko SO, Yang X, Jiang R, et al. β-Catenin is required in odontoblasts for tooth root formation. J Dent Res. 2013;92(3):215–21. Available from: https://doi.org/10.1177/0022034512470137
dc.relation.references25. Rajendra Santosh AB. Odontogenic Cysts. Dent Clin North Am [Internet]. 2020;64(1):105–19. Available from: https://doi.org/10.1016/j.cden.2019.08.002
dc.relation.references26. Soluk-Tekkesin M, Wright JM. The World Health Organization classification of odontogenic lesions: a summary of the changes of the 2022 (5th) edition. Turk Patoloji Derg. 2022;38(2):168–84. Available from: https://doi.org/10.5146/tjpath.2022.01573
dc.relation.references27. Nayyer NV, Macluskey M, Keys W. Odontogenic cysts – an overview. Dent Update. 2015;42(6):548–55. Available from: https://doi.org/10.12968/denu.2015.42.6.548
dc.relation.references28. Aldelaimi AAK, Enezei HH, Berum HER, Abdulkaream SM, Mohammed KA, Aldelaimi TN. Management of a dentigerous cyst: a ten-year clinicopathological study. BMC Oral Health. 2024;24(1):1–6. Available from: https://doi.org/10.1186/s12903-024-04607-w
dc.relation.references29. Krishnan R DK, Baby TK, Sara Babu S, Mariam Sabu M. A Gigantic Dentigerous Cyst in the Mandible with Four Impacted Anterior Teeth: A Rare Case Report. 2023;0–4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/
dc.relation.references30. Noujei Z, Nas L. The prevalence, distribution, and radiological evaluation of dentigerous cysts in a Lebanese sample. Imaging Sci Dent. 2021;51:1–7. Available from: https://doi.org/10.5624/ISD.20210075
dc.relation.references31. Brown SJ, Conn BI. Odontogenic cysts: classification, histological features and a practical approach to common diagnostic problems. Diagnostic Histopathol [Internet]. 2022;28(5):253–66. Available from: https://doi.org/10.1016/j.mpdhp.2022.02.007
dc.relation.references32. Polak K, Jędrusik-Pawłowska M, Drozdzowska B, Morawiec T. Odontogenic keratocyst of the mandible: a case report and literature review. Dent Med Probl. 2019;56(4):433–6. Available from: https://doi.org/10.17219/dmp/110682
dc.relation.references33. Boffano P, Cavarra F, Agnone AM, Brucoli M, Ruslin M, Forouzanfar T, et al. The epidemiology and management of odontogenic keratocysts (OKCs): a European multicenter study. J Craniomaxillofac Surg. 2022;50(1):1–6. Available from: https://doi.org/10.1016/j.jcms.2021.09.022
dc.relation.references34. Ünsal G, Cicciù M, Saleh RAA, Hammamy MRA, Kadri AA, Kuran B, et al. Radiological evaluation of odontogenic keratocysts in patients with nevoid basal cell carcinoma syndrome: a review. Saudi Dent J. 2023;35(6):614–24. Available from: https://doi.org/10.1016/j.sdentj.2023.05.023
dc.relation.references35. Shathur A, Patel B, Pitiyage G, Cameron S, Hyde N. Odontogenic keratocyst located in the retromolar trigone. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2021;132(3):e82–5. Available from: https://doi.org/10.1016/j.oooo.2021.02.008
dc.relation.references36. Zhang R, Yang J, Zhang J, Hong Y, Xie X, Li T. Should the solid variant of odontogenic keratocyst and keratoameloblastoma be classified as the same entity? A clinicopathological analysis of nine cases and a review of the literature. Pathology. 2021;53(4):478–86. Available from: https://doi.org/10.1016/j.pathol.2020.09.028
dc.relation.references37. Pylkkö J, Willberg J, Suominen A, Laine HK, Rautava J. Appearance and recurrence of odontogenic keratocysts. Clin Exp Dent Res. 2023;9(5):894–8. Available from: https://doi.org/10.1002/cre2.796
dc.relation.references38. Moellmann HL, Parviz A, Goldmann-Kirn M, Rana M, Rana M. Comparison of Five Different Treatment Approaches of Mandibular Keratocystic Odontogenic Keratocyst (OKC): A Retrospective Recurrence Analysis of Clinical and Radiographic Parameters. J Maxillofac Oral Surg [Internet]. 2024;23(1):145–51. Available from: https://doi.org/10.1007/s12663-023-01929-0
dc.relation.references39. Salman NJ, Santana E, Souza DP. Mandibular botryoid cyst with large extension, treated by decompression and marsupialization: a case report. Med Clin Case Rep J. 2023;1(2):56–9. Available from: https://doi.org/10.51219/mccrj/nour-jihad-salman/17
dc.relation.references40. Vidaković B, Uljanić I, Grgurević J, Perić B, Manojlović S. Botryoid cyst, a rare type of odontogenic cyst. Acta Clin Croat. 2016;55(3):510–4. Available from: https://doi.org/10.20471/acc.2016.55.03.24
dc.relation.references41. Arora P, Bishen K, Gupta N, Jamdade A, Kumar G. Botryoid odontogenic cyst developing from lateral periodontal cyst: a rare case and review on pathogenesis. Contemp Clin Dent. 2012;3(3):326. Available from: https://doi.org/10.4103/0976-237x.103629
dc.relation.references42. Sivanmalai S, Kandhasamy K, Prabu N, Prince CN, Prabu CSAPS. Carnoy’s solution in the management of odontogenic keratocyst. J Pharm Bioallied Sci. 2012;4(Suppl 2 Pt 1):183–6. Available from: https://doi.org/10.4103/0975-7406.100266
dc.relation.references43. Park JC, Cheung WS, Campbell KM. A rare case of gingival cyst in a child. J Dent Child. 2017;84(1):44–6. Available from: https://research.ebsco.com/c/7t4tnr/viewer/pdf/gvupc6cybv?auth-callid=3cdf21aa-ad13-49c2-b2d9-2e4880f46d9b
dc.relation.references44. Park JC, Cheung WS, Campbell KM. A rare case of gingival cyst in a child. J Dent Child. 2017;84(1):44–6. Available from: https://research.ebsco.com/c/7t4tnr/viewer/pdf/gvupc6cybv?auth-callid=3cdf21aa-ad13-49c2-b2d9-2e4880f46d9b
dc.relation.references45. Xu X, Li M, Hu J, Chen Z, Yu J, Dong Y, et al. Somatic mitochondrial DNA D-loop mutations in meningioma discovered: a preliminary data—a comprehensive overview of mitochondrial DNA 4977-bp. J Cancer Res Ther. 2018;14(7):1525–34. Available from: https://doi.org/10.4103/jcrt.JCRT
dc.relation.references46. Purohit S, Shah V, Bhakhar V, Harsh A. Glandular odontogenic cyst in maxilla: a case report and literature review. J Oral Maxillofac Pathol. 2014;18:320–3. Available from: https://doi.org/10.4103/0973-029X.140923
dc.relation.references47. Kar A. Glandular odontogenic cyst. Indian J Forensic Med Toxicol. 2020;14(4):9202–5. Available from: https://doi.org/10.37506/ijfmt.v14i4.13185
dc.relation.references48. Narayan Biswal B, Narayan Das S, Kumar Das B, Rath R. Alteration of cellular metabolism in cancer cells and its therapeutic. J Oral Maxillofac Pathol. 2017;21(3):244–51. Available from: https://doi.org/10.4103/jomfp.JOMFP_140_17
dc.relation.references49. Sacramento LV, De Aniz Castro IJV, Figueiredo LMG, Junior BC, Dos Santos JN, Henriques ÁCG. Calcifying odontogenic cyst with AOT-like features: a case report and literature review. Braz Dent Sci. 2023;26(4):1–10. Available from: https://doi.org/10.4322/bds.2023.e3823
dc.relation.references50. Mulvihill C, Ni Mhaolcatha S, Brady P, McKenna J, Sleeman D, Fitzgibbon J. Calcifying odontogenic cyst: a case report. Oral Surg. 2020;13(2):177–81. Available from: https://doi.org/10.1111/ors.12477
dc.relation.references51. Moreno-Rodríguez P, Guerrero LM, Gómez-Delgado A, Castro-Núñez J. Active decompression and distraction sugosteogenesis for the treatment of calcifying odontogenic cyst. Oral Maxillofac Surg. 2021;25(1):89–97. Available from: https://doi.org/10.1007/s10006-020-00885-0
dc.relation.references52. Huseyin K, Esin A, Aycan K. Outcome of dentigerous cysts treated with marsupialization. J Clin Pediatr Dent [Internet]. 2009 Dec 1;34(2):165–8. Available from: https://doi.org/10.17796/jcpd.34.2.9041w23282627207
dc.relation.references53. Wang J, Jin C, Zhao Y, Huang C. Analysis of changes in buccolingual width and cyst cavity depth at the stoma site during marsupialization for jaw cystic lesions. BMC Oral Health [Internet]. 2025;25(1). Available from: https://doi.org/10.1186/s12903-025-05562-w
dc.relation.references54. Briki S, Elleuch W, Karray F, Abdelmoula M, Tanoubi I. Cysts and tumors of the jaws treated by marsupialization: a description of 4 clinical cases. J Clin Exp Dent. 2019;11(6):e565–9. Available from: https://doi.org/10.4317/jced.55563
dc.relation.references55. Abu-Mostafa N. Marsupialization of dentigerous cysts followed by enucleation and extraction of deeply impacted third molars: two case reports. Cureus. 2022;14(4):1–9. Available from: https://doi.org/10.7759/cureus.23772
dc.relation.references56. Mahfuri A, Darwich K, Al Manadili A. Marsupialization of a Large Dentigerous Cyst in the Mandible: A Case Report. Cureus. 2022;14(7):2–13.
dc.relation.references57. Tian F cong, Bergeron BE, Kalathingal S, Morris M, Wang X yan, Niu L na, et al. Management of Large Radicular Lesions Using Decompression: A Case Series and Review of the Literature. J Endod [Internet]. 2019;45(5):651–9. Available from: https://doi.org/10.1016/j.joen.2018.12.014
dc.relation.references58. Song IS, Park HS, Seo BM, Lee JH, Kim MJ. Effect of decompression on cystic lesions of the mandible: 3-dimensional volumetric analysis. Br J Oral Maxillofac Surg [Internet]. 2015;53(9):841–8. Available from: http://dx.doi.org/10.1016/j.bjoms.2015.06.024
dc.relation.references59. Awni S, Conn B. Decompression of keratocystic odontogenic tumors leading to increased fibrosis, but without any change in epithelial proliferation. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2017;123(6):634–44. Available from: http://dx.doi.org/10.1016/j.oooo.2016.12.007
dc.relation.references60. Anavi Y, Gal G, Miron H, Calderon S, Allon DM. Decompression of odontogenic cystic lesions: Clinical long-term study of 73 cases. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 2011;112(2):164–9. Available from: http://dx.doi.org/10.1016/j.tripleo.2010.09.069
dc.relation.references61. Nakamura N, Mitsuyasu T, Mitsuyasu Y, Taketomi T, Higuchi Y, Ohishi M. Marsupialization for odontogenic keratocysts: long-term follow-up analysis of the effects and changes in growth characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(5):543–53. Available from: https://doi.org/10.1067/moe.2002.128022
dc.relation.references62. Swantek JJ, Reyes MI, Grannum RI, Ogle OE. A technique for long term decompression of large mandibular cysts. J Oral Maxillofac Surg [Internet]. 2012;70(4):856–9. Available from: http://dx.doi.org/10.1016/j.joms.2011.03.029
dc.relation.references63. Kubota Y, Ninomiya T, Oka S, Takenoshita Y, Shirasuna K. Interleukin-1alpha-dependent regulation of matrix metalloproteinase-9 (MMP-9) secretion and activation in the epithelial cells of odontogenic jaw cysts. J Dent Res. 2000;79(6):1423–30. Available from: https://doi.org/10.1177/00220345000790061201
dc.relation.references64. Motamedi MHK, Talesh KT. Management of extensive dentigerous cysts. Br Dent J. 2005;198(4):203–6. Available from: https://doi.org/10.1038/sj.bdj.4812082
dc.relation.references65. Bertolo-Domingues N, Girotto-Bussaneli D, Jeremias F, Aparecida-Giro EM, Aguiar-Pansani C, Bertolo-Domingues N, et al. Diagnosis and conservative treatment of dentigerous cyst: 3-year follow-up. CES Odontol [Internet]. 2018;31(1):57–65. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-971X2018000100057&lng=en&nrm=iso&tlng=es
dc.relation.references66. Oliveros-Lopez L, Fernandez-Olavarria A, Torres-Lagares D, Serrera-Figallo MA, Castillo-Oyagüe R, Segura-Egea JJ, et al. Reduction rate by decompression as a treatment of odontogenic cysts. Med Oral Patol Oral Cir Bucal. 2017;22(5):e643–50. Available from: https://doi.org/10.4317/medoral.21916
dc.relation.references67. Moturi K, Puvvada D, Kotha PR. A novel, minimally invasive technique in the management of a large cyst involving the maxilla in a child: a case report. Cureus. 2018;10(4):e2503. Available from: https://doi.org/10.7759/cureus.2503
dc.relation.references68. Alpy A, Tournaire L, Vaysse F, Marchal-Sixou C, Lhomme A, Courtois B. Interest of decompression in orthodontics: case report of a keratocyst during childhood. Int Orthod. 2017;15(2):238–50. Available from: https://doi.org/10.1016/j.ortho.2017.03.019
dc.relation.references69. Castro-Núñez J. Distraction sugosteogenesis: its biologic bases and therapeutic principles. J Craniofac Surg. 2018;29(8):2088–95. Available from: https://doi.org/10.1097/SCS.0000000000004892
dc.relation.references70. Anghel EL, Kim PJ. Negative-pressure wound therapy: a comprehensive review of the evidence. Plast Reconstr Surg. 2016;138(3 Suppl):129S–137S. Available from: https://doi.org/10.1097/PRS.0000000000002645
dc.relation.references71. Runyan CM, Gabrick KS. Biology of bone formation, fracture healing, and distraction osteogenesis. J Craniofac Surg. 2017;28(5):1380–9. Available from: https://doi.org/10.1097/SCS.0000000000003625
dc.relation.references72. Zhu J, Yu A, Qi B, Li Z, Hu X. Effects of negative pressure wound therapy on mesenchymal stem cells proliferation and osteogenic differentiation in a fibrin matrix. PLoS One. 2014;9(9):e107339. Available from: https://doi.org/10.1371/journal.pone.0107339
dc.relation.references73. Castro-Núñez J. An innovative decompression device to treat odontogenic cysts. J Craniofac Surg. 2016;27(5):1316. Available from: https://doi.org/10.1097/SCS.0000000000002784
dc.relation.references74. Castro-Núñez J. Decompression of odontogenic cystic lesions: Past, present, and future. J Oral Maxillofac Surg [Internet]. 2016;74(1):104.e1-104.e9. Available from: http://dx.doi.org/10.1016/j.joms.2015.09.004
dc.relation.references75. Ochsenius Germán, Escobar Enrico, Godoy Luis, Peñafiel Cristián. Odontogenic Cysts: Analysis of 2.944 cases in Chile. Med. oral patol. oral cir.bucal (Internet) [Internet]. 2007 Mar [citado 2025 Jul 30] ; 12( 2 ): 85-91. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S169869462007000200001&lng=es.
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectDescompresión Activa
dc.subjectQuistes Odontogénicos
dc.subjectRegeneración Ósea
dc.subject.keywordsActive decompression
dc.subject.keywordsOdontogenic cysts
dc.subject.keywordsBone regeneration
dc.subject.nlmWU 600
dc.titleManejo terapéutico conservador de quistes odontogénicos mediante descompresión activa: análisis mediante radiografía panorámicas
dc.title.translatedConservative therapeutic management of odontogenic cysts by active decompression. Analysis using panoramic radiograph
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Especializaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
1.35 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
Carta de autorizacion.pdf
Tamaño:
122.39 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Anexo 1 Acta de aprobacion.pdf
Tamaño:
283.62 KB
Formato:
Adobe Portable Document Format
Descripción: