Manejo terapéutico conservador de quistes odontogénicos mediante descompresión activa: análisis mediante radiografía panorámicas
| dc.contributor.advisor | Arango Fernández, Hernán Guillermo | |
| dc.contributor.advisor | Gamboa Hernández, Carolina | |
| dc.contributor.advisor | Tocora Rodriguez, Juan Camilo | |
| dc.contributor.author | Carrascal Villalba, Bryan Luis | |
| dc.contributor.author | Zambrano Coronel, José Federico | |
| dc.date.accessioned | 2025-08-11T20:51:21Z | |
| dc.date.available | 2025-08-11T20:51:21Z | |
| dc.date.issued | 2025-08 | |
| dc.description.abstract | Antecedentes: Los quistes odontogénicos son cavidades patológicas recubiertas por epitelio que se desarrollan en los maxilares, cuyo crecimiento puede causar reabsorción ósea y desplazamiento dentario. La descompresión activa es una técnica conservadora que busca reducir el volumen de estas lesiones mediante la aplicación de presión negativa, favoreciendo la regeneración ósea y evitando cirugías invasivas. Objetivo: Describir la evolución radiográfica del tamaño de los quistes odontogénicos tratados mediante descompresión activa en cuatro casos clínicos. Metodología: Se realizó un estudio retrospectivo tipo serie de casos. Se analizaron radiografías panorámicas secuenciales (inicial, a los 3 y a los 6 meses) de cuatro pacientes tratados en una clínica odontológica en Barranquilla entre 2019 y 2023 con el dispositivo Hemovac (Evocyst). Se midieron las dimensiones de los quistes usando software digital para evaluar la reducción de tamaño. Resultados: En todos los casos se observó una disminución progresiva en las dimensiones de los quistes. Los quistes de tamaño moderado presentaron una reducción más rápida, mientras que los más grandes mostraron una disminución más gradual. El porcentaje de reducción varió entre 40% y 87%, según el tamaño inicial de la lesión. Conclusión: En esta serie de casos, la descompresión activa con Hemovac (Evocyst) se asoció con una reducción progresiva del tamaño de los quistes odontogénicos, lo que sugiere que podría ser una técnica mínimamente invasiva y conservadora útil en el manejo de estas lesiones. Estos hallazgos preliminares respaldan su uso en casos seleccionados, especialmente en lesiones grandes o en zonas anatómicamente complejas, aunque se requieren estudios con mayor tamaño de muestra y diseño analítico para confirmar su eficacia. | |
| dc.description.abstractenglish | Background: Odontogenic cysts are pathological cavities covered by epithelium that develop in the maxillary bones, whose growth can cause bone resorption and tooth displacement. Active decompression is a conservative technique that seeks to reduce the volume of these lesions by applying negative pressure, promoting bone regeneration, and avoiding radical bone resections. Aim: To describe the radiographic evolution of the size of odontogenic cysts treated by active decompression in four clinical cases. Methods: A retrospective case series study was conducted. Sequential panoramic radiographs (initial, at 3 and 6 months) of four patients treated at a dental clinic in the city of Barranquilla between 2019 and 2023 with the Hemovac (Evocyst) device were analyzed. The dimensions of the cysts were measured using digital software to assess size reduction. Results: In all cases, a progressive decrease in cyst dimensions was observed. Moderate-sized cysts showed a more rapid reduction, while larger cysts showed a more gradual decrease. The percentage of reduction varied between 40% and 87%, depending on the initial size of the lesion. Conclusions: In this series of cases, active decompression with Hemovac (Evocyst) was associated with a progressive reduction in the size of odontogenic cysts, suggesting that it could be a useful, minimally invasive, and conservative technique in the management of these lesions. These preliminary findings support its use in selected cases, especially in large lesions or anatomically complex areas. However, studies with larger sample sizes and analytical designs are needed to confirm its efficacy. | |
| dc.description.degreelevel | Especialización | spa |
| dc.description.degreename | Especialista en cirugía oral y maxilofacial | spa |
| dc.description.sponsorship | SOMECA Clínica Odontológicas | |
| dc.description.sponsorship | Grupo de Investigación UNIECLO – Unidad de Epidemiología Clínica Oral | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | instname:Universidad El Bosque | spa |
| dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
| dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12495/15696 | |
| dc.language.iso | es | |
| dc.publisher.faculty | Facultad de Odontología | spa |
| dc.publisher.grantor | Universidad El Bosque | spa |
| dc.publisher.program | Especialización en cirugía oral y maxilofacial | spa |
| dc.relation.references | 1. Dhanuthai K, Chantarangsu S, Klanrit P, Chamusri N, Aminishakib P, Khoozestani NK, et al. Cysts of the jaws: a multicentre study. Oral Dis. 2024;30:2347–54. Available from: https://doi.org/10.1111/odi.14722 | |
| dc.relation.references | 2. Castro-Núñez J, Wiscovitch AG, Porte JP, Wiscovitch J, Rivera B, Guerrero LM. Does active decompression of odontogenic keratocyst change the histologic diagnosis? Oral Maxillofac Surg. 2022;26:291–8. Available from: https://doi.org/10.1007/s10006-021-00994-4 | |
| dc.relation.references | 3. Rioux-Forker D, Deziel AC, Williams LS, Muzaffar AR. Odontogenic cysts and tumors. Ann Plast Surg. 2019;82(4):469–77. Available from: https://doi.org/10.1097/SAP.0000000000001738 | |
| dc.relation.references | 4. Talpos-Niculescu RM, Popa M, Rusu LC, Pricop MO, Nica LM, Talpos-Niculescu S. Conservative approach in the management of large periapical cyst-like lesions: a report of two cases. Medicina (Kaunas). 2021;57(5):497. Available from: https://doi.org/10.3390/medicina57050497 | |
| dc.relation.references | 5. Trujillo-Saldarriaga S, Cuéllar MA, Alfaro-Portillo C, Moreno-Rodríguez P, Gómez-Delgado A, Castro-Núñez J. Potential role of active decompression with distraction sugosteogenesis for the management of odontogenic cystic lesions: a retrospective review of 10 cases. Oral Maxillofac Surg [Internet]. 2022;26(2):239–45. Available from: https://doi.org/10.1007/s10006-021-00970-y | |
| dc.relation.references | 6. Ochoa Moreira JA, Reinoso Quezada SJ, Molina-Barahona M. Técnicas para el tratamiento del queratoquiste: revisión de la literatura y presentación de un caso. Rev Cient Odontol. 2023;11(2):e159. Available from: https://doi.org/10.21142/2523-2754-1102-2023-159 | |
| dc.relation.references | 7. Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development. 2010;137(16):2605–21. Available from: https://doi.org/10.1242/dev.040048 | |
| dc.relation.references | 8. Graham A. Development of the pharyngeal arches. Am J Med Genet A. 2003;119A(3):251–6. Available from: https://doi.org/10.1002/ajmg.a.10980 | |
| dc.relation.references | 9. Carlson DS. Craniofacial embryogenetics and development. Am J Orthod Dentofac Orthop [Internet]. 2019;155(6):897–8. Available from: https://doi.org/10.1016/j.ajodo.2019.04.001 | |
| dc.relation.references | 10. Rodríguez-Vázquez JF, Mérida-Velasco JR, Verdugo-López S, Sánchez-Montesinos I, Mérida-Velasco JA. Morphogenesis of the second pharyngeal arch cartilage (Reichert’s cartilage) in human embryos. J Anat. 2006;208(2):179–89. Available from: https://doi.org/10.1111/j.1469-7580.2006.00524.x | |
| dc.relation.references | 11. Graham A, Poopalasundaram S, Shone V, Kiecker C. A reappraisal and revision of the numbering of the pharyngeal arches. J Anat. 2019;235(6):1019–23. Available from: https://doi.org/10.1111/joa.13067 | |
| dc.relation.references | 12. Nolla CM. The development of the permanent teeth. J Dent Child. 1960;27(4):254–66. Available from: https://doi.org/10.1021/ba-1977-0164.ch002 | |
| dc.relation.references | 13. Manlove AE, Romeo G, Venugopalan SR. Craniofacial Growth: Current Theories and Influence on Management. Oral Maxillofac Surg Clin North Am [Internet]. 2020;32(2):167–75. Available from: https://doi.org/10.1016/j.coms.2020.01.007 | |
| dc.relation.references | 14. Stutzmann JJ, Petrovic AG. Role of the lateral pterygoid muscle and meniscotemporomandibular frenum in spontaneous growth of the mandible and in growth stimulated by the postural hyperpropulsor. Am J Orthod Dentofac Orthop. 1990;97(5):381–92. Available from: https://doi.org/10.1016/0889-5406(90)70110-X | |
| dc.relation.references | 15. Chai Y, Maxson RE. Recent advances in craniofacial morphogenesis. Dev Dyn. 2006;235(9):2353–75. Available from: https://doi.org/10.1002/dvdy.20833 | |
| dc.relation.references | 16. Camargo D, Rocio E, Gamboa O, Ariel E, Murillo T. Theories of craniofacial growth : a literature review Theories of craniofacial growth : a literature review . Theor Craneofacial Growth a Lit Rev. 2017;78–88. Available from: http://dx.doi.org/10.15332/us.v16i0.2022 | |
| dc.relation.references | 17. Yu T, Klein OD. Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development. 2020;147(2):dev184754. Available from: https://doi.org/10.1242/dev.184754 | |
| dc.relation.references | 18. Qiu T, Teshima THN, Hovorakova M, Tucker AS. Development of the vestibular lamina in human embryos: morphogenesis and vestibule formation. Front Physiol. 2020;11:753. Available from: https://doi.org/10.3389/fphys.2020.00753 | |
| dc.relation.references | 19. Puthiyaveetil JSV, Kota K, Chakkarayan R, Chakkarayan J, Thodiyil AKP. Epithelial–mesenchymal interactions in tooth development and the significant role of growth factors and genes with emphasis on mesenchyme: a review. J Clin Diagn Res. 2016;10(9):ZE05–9. Available from: https://doi.org/10.7860/JCDR/2016/21719.8502 | |
| dc.relation.references | 20. Wang Y, Li L, Zheng Y, Yuan G, Yang G, He F, et al. BMP activity is required for tooth development from the lamina to bud stage. J Dent Res. 2012;91(7):690–5. Available from: https://doi.org/10.1177/0022034512448660 | |
| dc.relation.references | 21. Balic A, Thesleff I. Tissue Interactions Regulating Tooth Development and Renewal [Internet]. 1st ed. Vol. 115, Current Topics in Developmental Biology. Elsevier Inc.; 2015. 157–186 p. Available from: http://dx.doi.org/10.1016/bs.ctdb.2015.07.006 | |
| dc.relation.references | 22. Hovorakova M, Lesot H, Peterka M, Peterkova R. The developmental relationship between the deciduous dentition and the oral vestibule in human embryos. Anat Embryol (Berl). 2005;209(4):303–13. Available from: https://doi.org/10.1007/s00429-004-0441-y | |
| dc.relation.references | 23. He P, Zhang Y, Kim SO, Radlanski RJ, Butcher K, Schneider RA, et al. Ameloblast differentiation in the human developing tooth: Effects of extracellular matrices. Matrix Biol [Internet]. 2010;29(5):411–9. Available from: http://dx.doi.org/10.1016/j.matbio.2010.03.001 | |
| dc.relation.references | 24. Kim TH, Bae CH, Lee JC, Ko SO, Yang X, Jiang R, et al. β-Catenin is required in odontoblasts for tooth root formation. J Dent Res. 2013;92(3):215–21. Available from: https://doi.org/10.1177/0022034512470137 | |
| dc.relation.references | 25. Rajendra Santosh AB. Odontogenic Cysts. Dent Clin North Am [Internet]. 2020;64(1):105–19. Available from: https://doi.org/10.1016/j.cden.2019.08.002 | |
| dc.relation.references | 26. Soluk-Tekkesin M, Wright JM. The World Health Organization classification of odontogenic lesions: a summary of the changes of the 2022 (5th) edition. Turk Patoloji Derg. 2022;38(2):168–84. Available from: https://doi.org/10.5146/tjpath.2022.01573 | |
| dc.relation.references | 27. Nayyer NV, Macluskey M, Keys W. Odontogenic cysts – an overview. Dent Update. 2015;42(6):548–55. Available from: https://doi.org/10.12968/denu.2015.42.6.548 | |
| dc.relation.references | 28. Aldelaimi AAK, Enezei HH, Berum HER, Abdulkaream SM, Mohammed KA, Aldelaimi TN. Management of a dentigerous cyst: a ten-year clinicopathological study. BMC Oral Health. 2024;24(1):1–6. Available from: https://doi.org/10.1186/s12903-024-04607-w | |
| dc.relation.references | 29. Krishnan R DK, Baby TK, Sara Babu S, Mariam Sabu M. A Gigantic Dentigerous Cyst in the Mandible with Four Impacted Anterior Teeth: A Rare Case Report. 2023;0–4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/ | |
| dc.relation.references | 30. Noujei Z, Nas L. The prevalence, distribution, and radiological evaluation of dentigerous cysts in a Lebanese sample. Imaging Sci Dent. 2021;51:1–7. Available from: https://doi.org/10.5624/ISD.20210075 | |
| dc.relation.references | 31. Brown SJ, Conn BI. Odontogenic cysts: classification, histological features and a practical approach to common diagnostic problems. Diagnostic Histopathol [Internet]. 2022;28(5):253–66. Available from: https://doi.org/10.1016/j.mpdhp.2022.02.007 | |
| dc.relation.references | 32. Polak K, Jędrusik-Pawłowska M, Drozdzowska B, Morawiec T. Odontogenic keratocyst of the mandible: a case report and literature review. Dent Med Probl. 2019;56(4):433–6. Available from: https://doi.org/10.17219/dmp/110682 | |
| dc.relation.references | 33. Boffano P, Cavarra F, Agnone AM, Brucoli M, Ruslin M, Forouzanfar T, et al. The epidemiology and management of odontogenic keratocysts (OKCs): a European multicenter study. J Craniomaxillofac Surg. 2022;50(1):1–6. Available from: https://doi.org/10.1016/j.jcms.2021.09.022 | |
| dc.relation.references | 34. Ünsal G, Cicciù M, Saleh RAA, Hammamy MRA, Kadri AA, Kuran B, et al. Radiological evaluation of odontogenic keratocysts in patients with nevoid basal cell carcinoma syndrome: a review. Saudi Dent J. 2023;35(6):614–24. Available from: https://doi.org/10.1016/j.sdentj.2023.05.023 | |
| dc.relation.references | 35. Shathur A, Patel B, Pitiyage G, Cameron S, Hyde N. Odontogenic keratocyst located in the retromolar trigone. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2021;132(3):e82–5. Available from: https://doi.org/10.1016/j.oooo.2021.02.008 | |
| dc.relation.references | 36. Zhang R, Yang J, Zhang J, Hong Y, Xie X, Li T. Should the solid variant of odontogenic keratocyst and keratoameloblastoma be classified as the same entity? A clinicopathological analysis of nine cases and a review of the literature. Pathology. 2021;53(4):478–86. Available from: https://doi.org/10.1016/j.pathol.2020.09.028 | |
| dc.relation.references | 37. Pylkkö J, Willberg J, Suominen A, Laine HK, Rautava J. Appearance and recurrence of odontogenic keratocysts. Clin Exp Dent Res. 2023;9(5):894–8. Available from: https://doi.org/10.1002/cre2.796 | |
| dc.relation.references | 38. Moellmann HL, Parviz A, Goldmann-Kirn M, Rana M, Rana M. Comparison of Five Different Treatment Approaches of Mandibular Keratocystic Odontogenic Keratocyst (OKC): A Retrospective Recurrence Analysis of Clinical and Radiographic Parameters. J Maxillofac Oral Surg [Internet]. 2024;23(1):145–51. Available from: https://doi.org/10.1007/s12663-023-01929-0 | |
| dc.relation.references | 39. Salman NJ, Santana E, Souza DP. Mandibular botryoid cyst with large extension, treated by decompression and marsupialization: a case report. Med Clin Case Rep J. 2023;1(2):56–9. Available from: https://doi.org/10.51219/mccrj/nour-jihad-salman/17 | |
| dc.relation.references | 40. Vidaković B, Uljanić I, Grgurević J, Perić B, Manojlović S. Botryoid cyst, a rare type of odontogenic cyst. Acta Clin Croat. 2016;55(3):510–4. Available from: https://doi.org/10.20471/acc.2016.55.03.24 | |
| dc.relation.references | 41. Arora P, Bishen K, Gupta N, Jamdade A, Kumar G. Botryoid odontogenic cyst developing from lateral periodontal cyst: a rare case and review on pathogenesis. Contemp Clin Dent. 2012;3(3):326. Available from: https://doi.org/10.4103/0976-237x.103629 | |
| dc.relation.references | 42. Sivanmalai S, Kandhasamy K, Prabu N, Prince CN, Prabu CSAPS. Carnoy’s solution in the management of odontogenic keratocyst. J Pharm Bioallied Sci. 2012;4(Suppl 2 Pt 1):183–6. Available from: https://doi.org/10.4103/0975-7406.100266 | |
| dc.relation.references | 43. Park JC, Cheung WS, Campbell KM. A rare case of gingival cyst in a child. J Dent Child. 2017;84(1):44–6. Available from: https://research.ebsco.com/c/7t4tnr/viewer/pdf/gvupc6cybv?auth-callid=3cdf21aa-ad13-49c2-b2d9-2e4880f46d9b | |
| dc.relation.references | 44. Park JC, Cheung WS, Campbell KM. A rare case of gingival cyst in a child. J Dent Child. 2017;84(1):44–6. Available from: https://research.ebsco.com/c/7t4tnr/viewer/pdf/gvupc6cybv?auth-callid=3cdf21aa-ad13-49c2-b2d9-2e4880f46d9b | |
| dc.relation.references | 45. Xu X, Li M, Hu J, Chen Z, Yu J, Dong Y, et al. Somatic mitochondrial DNA D-loop mutations in meningioma discovered: a preliminary data—a comprehensive overview of mitochondrial DNA 4977-bp. J Cancer Res Ther. 2018;14(7):1525–34. Available from: https://doi.org/10.4103/jcrt.JCRT | |
| dc.relation.references | 46. Purohit S, Shah V, Bhakhar V, Harsh A. Glandular odontogenic cyst in maxilla: a case report and literature review. J Oral Maxillofac Pathol. 2014;18:320–3. Available from: https://doi.org/10.4103/0973-029X.140923 | |
| dc.relation.references | 47. Kar A. Glandular odontogenic cyst. Indian J Forensic Med Toxicol. 2020;14(4):9202–5. Available from: https://doi.org/10.37506/ijfmt.v14i4.13185 | |
| dc.relation.references | 48. Narayan Biswal B, Narayan Das S, Kumar Das B, Rath R. Alteration of cellular metabolism in cancer cells and its therapeutic. J Oral Maxillofac Pathol. 2017;21(3):244–51. Available from: https://doi.org/10.4103/jomfp.JOMFP_140_17 | |
| dc.relation.references | 49. Sacramento LV, De Aniz Castro IJV, Figueiredo LMG, Junior BC, Dos Santos JN, Henriques ÁCG. Calcifying odontogenic cyst with AOT-like features: a case report and literature review. Braz Dent Sci. 2023;26(4):1–10. Available from: https://doi.org/10.4322/bds.2023.e3823 | |
| dc.relation.references | 50. Mulvihill C, Ni Mhaolcatha S, Brady P, McKenna J, Sleeman D, Fitzgibbon J. Calcifying odontogenic cyst: a case report. Oral Surg. 2020;13(2):177–81. Available from: https://doi.org/10.1111/ors.12477 | |
| dc.relation.references | 51. Moreno-Rodríguez P, Guerrero LM, Gómez-Delgado A, Castro-Núñez J. Active decompression and distraction sugosteogenesis for the treatment of calcifying odontogenic cyst. Oral Maxillofac Surg. 2021;25(1):89–97. Available from: https://doi.org/10.1007/s10006-020-00885-0 | |
| dc.relation.references | 52. Huseyin K, Esin A, Aycan K. Outcome of dentigerous cysts treated with marsupialization. J Clin Pediatr Dent [Internet]. 2009 Dec 1;34(2):165–8. Available from: https://doi.org/10.17796/jcpd.34.2.9041w23282627207 | |
| dc.relation.references | 53. Wang J, Jin C, Zhao Y, Huang C. Analysis of changes in buccolingual width and cyst cavity depth at the stoma site during marsupialization for jaw cystic lesions. BMC Oral Health [Internet]. 2025;25(1). Available from: https://doi.org/10.1186/s12903-025-05562-w | |
| dc.relation.references | 54. Briki S, Elleuch W, Karray F, Abdelmoula M, Tanoubi I. Cysts and tumors of the jaws treated by marsupialization: a description of 4 clinical cases. J Clin Exp Dent. 2019;11(6):e565–9. Available from: https://doi.org/10.4317/jced.55563 | |
| dc.relation.references | 55. Abu-Mostafa N. Marsupialization of dentigerous cysts followed by enucleation and extraction of deeply impacted third molars: two case reports. Cureus. 2022;14(4):1–9. Available from: https://doi.org/10.7759/cureus.23772 | |
| dc.relation.references | 56. Mahfuri A, Darwich K, Al Manadili A. Marsupialization of a Large Dentigerous Cyst in the Mandible: A Case Report. Cureus. 2022;14(7):2–13. | |
| dc.relation.references | 57. Tian F cong, Bergeron BE, Kalathingal S, Morris M, Wang X yan, Niu L na, et al. Management of Large Radicular Lesions Using Decompression: A Case Series and Review of the Literature. J Endod [Internet]. 2019;45(5):651–9. Available from: https://doi.org/10.1016/j.joen.2018.12.014 | |
| dc.relation.references | 58. Song IS, Park HS, Seo BM, Lee JH, Kim MJ. Effect of decompression on cystic lesions of the mandible: 3-dimensional volumetric analysis. Br J Oral Maxillofac Surg [Internet]. 2015;53(9):841–8. Available from: http://dx.doi.org/10.1016/j.bjoms.2015.06.024 | |
| dc.relation.references | 59. Awni S, Conn B. Decompression of keratocystic odontogenic tumors leading to increased fibrosis, but without any change in epithelial proliferation. Oral Surg Oral Med Oral Pathol Oral Radiol [Internet]. 2017;123(6):634–44. Available from: http://dx.doi.org/10.1016/j.oooo.2016.12.007 | |
| dc.relation.references | 60. Anavi Y, Gal G, Miron H, Calderon S, Allon DM. Decompression of odontogenic cystic lesions: Clinical long-term study of 73 cases. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology [Internet]. 2011;112(2):164–9. Available from: http://dx.doi.org/10.1016/j.tripleo.2010.09.069 | |
| dc.relation.references | 61. Nakamura N, Mitsuyasu T, Mitsuyasu Y, Taketomi T, Higuchi Y, Ohishi M. Marsupialization for odontogenic keratocysts: long-term follow-up analysis of the effects and changes in growth characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2002;94(5):543–53. Available from: https://doi.org/10.1067/moe.2002.128022 | |
| dc.relation.references | 62. Swantek JJ, Reyes MI, Grannum RI, Ogle OE. A technique for long term decompression of large mandibular cysts. J Oral Maxillofac Surg [Internet]. 2012;70(4):856–9. Available from: http://dx.doi.org/10.1016/j.joms.2011.03.029 | |
| dc.relation.references | 63. Kubota Y, Ninomiya T, Oka S, Takenoshita Y, Shirasuna K. Interleukin-1alpha-dependent regulation of matrix metalloproteinase-9 (MMP-9) secretion and activation in the epithelial cells of odontogenic jaw cysts. J Dent Res. 2000;79(6):1423–30. Available from: https://doi.org/10.1177/00220345000790061201 | |
| dc.relation.references | 64. Motamedi MHK, Talesh KT. Management of extensive dentigerous cysts. Br Dent J. 2005;198(4):203–6. Available from: https://doi.org/10.1038/sj.bdj.4812082 | |
| dc.relation.references | 65. Bertolo-Domingues N, Girotto-Bussaneli D, Jeremias F, Aparecida-Giro EM, Aguiar-Pansani C, Bertolo-Domingues N, et al. Diagnosis and conservative treatment of dentigerous cyst: 3-year follow-up. CES Odontol [Internet]. 2018;31(1):57–65. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-971X2018000100057&lng=en&nrm=iso&tlng=es | |
| dc.relation.references | 66. Oliveros-Lopez L, Fernandez-Olavarria A, Torres-Lagares D, Serrera-Figallo MA, Castillo-Oyagüe R, Segura-Egea JJ, et al. Reduction rate by decompression as a treatment of odontogenic cysts. Med Oral Patol Oral Cir Bucal. 2017;22(5):e643–50. Available from: https://doi.org/10.4317/medoral.21916 | |
| dc.relation.references | 67. Moturi K, Puvvada D, Kotha PR. A novel, minimally invasive technique in the management of a large cyst involving the maxilla in a child: a case report. Cureus. 2018;10(4):e2503. Available from: https://doi.org/10.7759/cureus.2503 | |
| dc.relation.references | 68. Alpy A, Tournaire L, Vaysse F, Marchal-Sixou C, Lhomme A, Courtois B. Interest of decompression in orthodontics: case report of a keratocyst during childhood. Int Orthod. 2017;15(2):238–50. Available from: https://doi.org/10.1016/j.ortho.2017.03.019 | |
| dc.relation.references | 69. Castro-Núñez J. Distraction sugosteogenesis: its biologic bases and therapeutic principles. J Craniofac Surg. 2018;29(8):2088–95. Available from: https://doi.org/10.1097/SCS.0000000000004892 | |
| dc.relation.references | 70. Anghel EL, Kim PJ. Negative-pressure wound therapy: a comprehensive review of the evidence. Plast Reconstr Surg. 2016;138(3 Suppl):129S–137S. Available from: https://doi.org/10.1097/PRS.0000000000002645 | |
| dc.relation.references | 71. Runyan CM, Gabrick KS. Biology of bone formation, fracture healing, and distraction osteogenesis. J Craniofac Surg. 2017;28(5):1380–9. Available from: https://doi.org/10.1097/SCS.0000000000003625 | |
| dc.relation.references | 72. Zhu J, Yu A, Qi B, Li Z, Hu X. Effects of negative pressure wound therapy on mesenchymal stem cells proliferation and osteogenic differentiation in a fibrin matrix. PLoS One. 2014;9(9):e107339. Available from: https://doi.org/10.1371/journal.pone.0107339 | |
| dc.relation.references | 73. Castro-Núñez J. An innovative decompression device to treat odontogenic cysts. J Craniofac Surg. 2016;27(5):1316. Available from: https://doi.org/10.1097/SCS.0000000000002784 | |
| dc.relation.references | 74. Castro-Núñez J. Decompression of odontogenic cystic lesions: Past, present, and future. J Oral Maxillofac Surg [Internet]. 2016;74(1):104.e1-104.e9. Available from: http://dx.doi.org/10.1016/j.joms.2015.09.004 | |
| dc.relation.references | 75. Ochsenius Germán, Escobar Enrico, Godoy Luis, Peñafiel Cristián. Odontogenic Cysts: Analysis of 2.944 cases in Chile. Med. oral patol. oral cir.bucal (Internet) [Internet]. 2007 Mar [citado 2025 Jul 30] ; 12( 2 ): 85-91. Disponible en: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S169869462007000200001&lng=es. | |
| dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
| dc.rights.local | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject | Descompresión Activa | |
| dc.subject | Quistes Odontogénicos | |
| dc.subject | Regeneración Ósea | |
| dc.subject.keywords | Active decompression | |
| dc.subject.keywords | Odontogenic cysts | |
| dc.subject.keywords | Bone regeneration | |
| dc.subject.nlm | WU 600 | |
| dc.title | Manejo terapéutico conservador de quistes odontogénicos mediante descompresión activa: análisis mediante radiografía panorámicas | |
| dc.title.translated | Conservative therapeutic management of odontogenic cysts by active decompression. Analysis using panoramic radiograph | |
| dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
| dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
| dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
| dc.type.local | Tesis/Trabajo de grado - Monografía - Especialización | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 1.35 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
Cargando...
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 122.39 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- Anexo 1 Acta de aprobacion.pdf
- Tamaño:
- 283.62 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
