Estudio del impacto de los parámetros del proceso de granulación húmeda sobre los atributos farmacotécnicos de gránulos de Sílice

dc.contributor.advisorJimenez Cruz, Ronald Andres
dc.contributor.authorGómez Jerez, Yudy Alexandra
dc.date.accessioned2025-05-16T20:39:42Z
dc.date.available2025-05-16T20:39:42Z
dc.date.issued2025-05
dc.description.abstractLa granulación húmeda es un proceso crucial en la fabricación farmacéutica ya que influye en las propiedades físicas de los gránulos y, por tanto, en la calidad del producto final. Este estudio se centró en el procesamiento de gránulos de Sílice (dióxido de silicio) utilizando un granulador oscilante, variando parámetros como la concentración de aglutinante PVP K30, la velocidad de oscilación entre 55, 155,305 rpm y el tamaño de malla 16 y 20. Se emplearon varias metodologías para caracterizar los gránulos, incluyendo la friabilidad, dureza, ángulo de reposo, índice de Carr e índice de Hausner. Los resultados obtenidos indican que un aumento de la concentración de PVP K30 y de la velocidad de oscilación mejoraba la cohesión y la resistencia mecánica de los gránulos. Además, los gránulos presentaban formas redondas y una porosidad moderada, lo que favorecía su fluidez. Por tanto, la optimización de los parámetros de granulación puede conducir a la producción de formulaciones farmacéuticas más eficientes y eficaces, contribuyendo así a la mejora de los procesos de fabricación en la industria.
dc.description.abstractenglishWet granulation is a crucial process in pharmaceutical manufacturing as it influences the physical properties of the granules and thus the quality of the final product. This study focused on the processing of Silica (silicon dioxide) granules using an oscillating granulator, varying parameters such as PVP K30 binder concentration, oscillation speed between 55, 155,305 rpm and mesh size 16 and 20. Several methodologies were employed to characterize the granules, including friability, hardness, angle of repose, Carr's index and Hausner's index. The results obtained indicate that an increase in PVP K30 concentration and oscillation rate improved the cohesion and mechanical strength of the granules. In addition, the granules exhibited round shapes and moderate porosity, which favored their flowability. Therefore, the optimization of granulation parameters can lead to the production of more efficient and effective pharmaceutical formulations, thus contributing to the improvement of manufacturing processes in the industry.
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/14376
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.references1. Aulton, M.E., Taylor, K. Aulton's Pharmaceutics: The Design and Manufacture of Medicines. Elsevier; 2018. https://books.google.com.co/books?hl=es&lr=&id=rrtGKQxcoWIC&oi=fnd&pg=PP1&dq=Aulto
dc.relation.references2. Lachman, L., Lieberman, H.A., Kanig, J.L. The Theory and Practice of Industrial Pharmacy. Lea & Febiger; 2020. https://archive.org/details/TheTheoryAndPracticeOfIndustrialPharmacyByLachmanAndLieberman3rdEditnsameep104/page/n3/mode/2up
dc.relation.references3. Shargel, L., Yu, A.B.C. Applied Biopharmaceutics & Pharmacokinetics. McGraw-Hill; 2019. https://uomustansiriyah.edu.iq/media/lectures/4/4_2016_06_26!10_36_26_AM.pdf
dc.relation.references4. Pinal, R., et al. The role of excipients in the formulation of solid dosage forms. Pharmaceutics. 2020;12(4):345. https://pubs.rsc.org/en/content/articlehtml/2025/pm/d4pm00259h
dc.relation.references5. Bansal, A.K., et al. Influence of particle shape on the flowability of granules. Asian Journal of Pharmaceutical Sciences. 2019;14(5):545-553. https://www.ingentaconnect.com/content/ben/cn/2021/00000019/00000007/art00006
dc.relation.references6. Thakur, A., et al. Role of porosity in the mechanical properties of pharmaceutical granules. Pharmaceutics. 2020;12(3):234. https://www.tandfonline.com/doi/abs/10.1080/01932691.2023.2289623
dc.relation.references7. Zhang, Y., et al. Influence of porosity on the dissolution of granules. International Journal of Pharmaceutics. 2018;548(1):234-241. https://open-science-cloud.ec.europa.eu/resources/all?q=%2210.1016/j.carbpol.2018.08.035%22
dc.relation.references8. Makoto Otsuka, Jian Gao y Yoshihisa Matsuda, Efecto de la cantidad de agua añadida durante el proceso de extrusión-esferonización en las propiedades farmacéuticas de los gránulos, desarrollo de fármacos y farmacia industrial, 20:19, 2977-2992; 1994. Disponible en DOI: 10.3109/03639049409041962
dc.relation.references9. Tiwari, G., et al. Formulation and evaluation of controlled-release tablets of metformin hydrochloride. Asian Journal of Pharmaceutical Sciences. 2019;14(5):545-553. https://www.mdpi.com/1999-4923/11/4/193
dc.relation.references10. Benidic M, Determinación de los parámetros geotécnicos a partir del ángulo de reposo en la arena de la cantera tita cruz, pasco. Universidad Nacional Daniel Alcides Carrión; 2018. Disponible en: http://repositorio.undac.edu.pe/bitstream/undac/476/1/TESIS_ANGULO%20DE%20REPOSO%2 0FINAL.pdf
dc.relation.references11. De Lima, A.C., et al. Flow properties of pharmaceutical powders: A review. Drug Development and Industrial Pharmacy. 2021;47(7):1091-1102. https://www.researchgate.net/profile/Mahmoud-Alburyhi/publication/384703872_
dc.relation.references12. Bansal, A.K., et al. Influence of particle size on the flowability of granules. International Journal of Pharmaceutics. 2020;586:119553. https://www.sciencedirect.com/science/article/abs/pii/S0378517321002283
dc.relation.references13. Carr, R.L. Evaluating flow properties of solids. Chemical Engineering. 1965;72(3):69-72 https://cir.nii.ac.jp/crid/1572824499833295488
dc.relation.references14. Hausner, H. Friction conditions in a mass of metal powder. International Journal of Powder Metallurgy. 1967;3(4):7-13. https://www.osti.gov/biblio/4566075
dc.relation.references15. Sheskey, P.J., et al. Handbook of Pharmaceutical Excipients. 7th ed. Pharmaceutical Press; 2016. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118992432.ch5
dc.relation.references16. Chavan R, Khedkar V, Shinde M, et al. A review on granulation techniques in pharmaceutical formulation. International Journal of Research in Pharmaceutical Sciences. 2020;11(2):1234-1240. https://www.researchgate.net/publication/359159493_GRANULATION_TECHNIQUES_AN_OVERVIEW
dc.relation.references17. Ghosh A, Kaur G, Arora S, et al. Role of excipients in the formulation of solid dosage forms: A review. International Journal of Pharmaceutical Sciences and Research. 2021;12(1):1-12. https://polimery.umw.edu.pl/en/article/2023/53/1/59/
dc.relation.references18. Kahn M, Lentz K, Sweeney R. The impact of granulation on the physical properties of pharmaceutical granules. Journal of Pharmaceutical Sciences. 2020;109(4):1283-1290. https://www.sciencedirect.com/science/article/pii/S1818087618306731
dc.relation.references19. Zhang Y, Zhang Z, Wang Y, et al. The effect of granulation parameters on the properties of granules: A systematic review. Pharmaceutics. 2021;13(2):234. https://journals.lww.com/ahm/fulltext/2022/03000/granulation_process_analysis_technologies_and.2.aspx
dc.relation.references20. Vila J. Tecnología farmacéutica: aspectos fundamentales de los sistemas farmacéuticos y operaciones básicas (Vol. I); 2001.
dc.relation.references21. Ghosh A, Das S, Saha S, et al. Role of excipients in the formulation of solid dosage forms: A review. Int J Pharm Sci Res. 2021;12(1):1-12. https://pubmed.ncbi.nlm.nih.gov/32344802/
dc.relation.references22. Zhang Y, Chen L, Wang H, et al. Influence of porosity on the dissolution of granules. Int J Pharm. 2018;548(1):234-241. https://www.sciencedirect.com/science/article/abs/pii/S0960852419301014
dc.relation.references23. Makoto O, Gao J, Matsuda Y. Effect of added water during extrusion-spheronization on pharmaceutical granule properties. Drug Dev Ind Pharm. 1994;20(19):2977-2992. https://www.tandfonline.com/doi/abs/10.3109/03639049409041962
dc.relation.references24. Vane JR, Botting RM. The mechanism of action of aspirin. Thrombosis Research. 2003;110(5):255-258. https://pubmed.ncbi.nlm.nih.gov/14592543/
dc.relation.references25. Patrono C, Garcia Rodriguez LA, Landolfi R, et al. Low-dose aspirin for the prevention of atherothrombotic events. The New England Journal of Medicine. 2005;353(22):2373-2383. https://pubmed.ncbi.nlm.nih.gov/16319386/
dc.relation.references26. Liu Y, Zhang H, et al. Enhancement of solubility and bioavailability of poorly water-soluble drugs: A review of the recent advances. Journal of Pharmaceutical Sciences. 2018;107(9):2187-2201. https://pubmed.ncbi.nlm.nih.gov/29937483/
dc.relation.references27. Bansal AK, et al. Silica-based excipients for drug delivery: A review. Drug Development and Industrial Pharmacy. 2015;41(10):1515-1522.https://pubmed.ncbi.nlm.nih.gov/24020012/
dc.relation.references28. Alshahrani SM, et al. The impact of silica on the properties of pharmaceutical powders. International Journal of Pharmaceutics. 2019;563:1-11. https://pubmed.ncbi.nlm.nih.gov/39654050/
dc.relation.references29. Sinha VR, et al. Solubility enhancement of poorly soluble drugs using silica-based carriers. Journal of Drug Delivery Science and Technology. 2017;38:1-12. https://www.researchgate.net/publication/236177023_Techniques_for_solubility_enhancement_of_poorly_soluble_drugs_An_overview
dc.relation.references30. Patel M, et al. Role of silica in the formulation of solid dosage forms. Springer. . 2020;109(3):1039-1050. https://link.springer.com/article/10.1208/s12249-022-02237-5
dc.relation.references31. Thakur, A., et al. (2020). Role of porosity in the mechanical properties of pharmaceutical granules. Pharmaceutics, 12(3), 234.
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectGranulación húmeda
dc.subjectPVP K30
dc.subjectGranulador oscilante
dc.subjectCohesión
dc.subjectResistencia mecánica
dc.subjectFluidez
dc.subjectOptimización de parámetros
dc.subject.ddc615.19
dc.subject.keywordsWet granulation
dc.subject.keywordsPVP K30
dc.subject.keywordsOscillating granulator
dc.subject.keywordsCohesion
dc.subject.keywordsMechanical resistance
dc.subject.keywordsFluency
dc.subject.keywordsParameter optimization
dc.titleEstudio del impacto de los parámetros del proceso de granulación húmeda sobre los atributos farmacotécnicos de gránulos de Sílice
dc.title.translatedStudy of the impact of wet granulation process parameters on the pharmacotechnical attributes of silica granules
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
1.61 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
215.44 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Anexo 1 Acta de aprobacion.pdf
Tamaño:
3.75 MB
Formato:
Adobe Portable Document Format
Descripción: