Avances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuro

dc.contributor.advisorVelandia París, María Angélica
dc.contributor.authorCamargo Ortíz, Paula
dc.contributor.authorGamboa Rodríguez, Laura Juliana
dc.date.accessioned2025-05-16T20:58:41Z
dc.date.available2025-05-16T20:58:41Z
dc.date.issued2025-05
dc.description.abstractEl cáncer de mama es una enfermedad con gran prevalencia a nivel mundial y se caracteriza por el crecimiento anormal y descontrolado de las células epiteliales y mioepiteliales de la mama. Tradicionalmente, el tratamiento ha estado basado en quimioterapias convencionales, las cuales carecen de selectividad para las células cancerosas, afectando también a células sanas y generando efectos adversos. En los últimos años, la investigación ha avanzado en el desarrollo de sistemas basados en nanopartículas para la administración de fármacos antineoplásicos, con el propósito de mejorar la selectividad y eficacia del tratamiento. El presente trabajo revisa los avances en nanopartículas para el tratamiento del cáncer de mama en los últimos cinco años, incluyendo sus métodos de obtención y métodos de caracterización, con el fin de establecer sus ventajas frente a terapias convencionales y perspectivas a futuro en este campo de investigación.
dc.description.abstractenglishBreast cancer is a disease with a high prevalence worldwide and is characterized by the abnormal and uncontrolled growth of epithelial cells and myoepithelial cells of the breast. Traditionally, treatment has been based on conventional chemotherapies, which lack selectivity for cancerous cells, affecting also healthy cells and generating adverse effects. In the last years, research has advanced in the development of systems based on nanoparticles for the administration of antineoplastic drugs, with the aim of improving the selectivity and efficacy of the treatment. This paper reviews the advances in nanoparticles for the treatment of breast cancer in the last five years, including their methods of obtaining and characterization methods, in order to establish their advantages over conventional therapies and future prospects in this field of research
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/14377
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.references1. Choi, L. Cáncer de mama. MSD Manual. Recuperado el 19 de abril de 2024, de Cáncer de mama - Ginecología y obstetricia - Manual MSD versión para profesionales (msdmanuals.com)
dc.relation.references2. Sanchez, Catherine. Conociendo y comprendiendo la célula cancerosa: Fisiopatología del cáncer. Revista Médica Clínica Las Condes. 24. 553-562. 10.1016/S0716-8640(13)70659-X.
dc.relation.references3. Organización Mundial de la Salud (OMS). Cáncer de mama. Recuperado el 29 de febrero de 2024, de https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer
dc.relation.references4. CAC & Gobierno de Colombia. Día mundial de la lucha contra el cáncer de mama 2023. Recuperado el 29 de febrero de 2024, de https://cuentadealtocosto.org/cancer/dia-mundial-de-la-lucha-contra-el-cancer-de-mama-2023/
dc.relation.references5. American Cancer Society. Quimioterapia contra el cáncer de seno. Recuperado el 29 de febrero de 2024, de https://cancer.org/es/cancer/tipos/cancer-de-seno/tratamiento/quimioterapia-para-elcancer-de-seno.html#:~:text=Diarrea,a%20los%20nervios%20a%20continuaci%C3%B3n
dc.relation.references6. Mirza, Z., & Karim, S. Nanoparticles-based drug delivery and gene therapy for breast cancer: recent advancements and future challenges. Seminars in Cancer Biology. doi:10.1016/j.semcancer.2019.10.020
dc.relation.references7. Bahrami, B., Hojjat-Farsangi, M., Mohammadi, H., Anvari, E., Ghalamfarsa, G., Yousefi, M., & Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunology Letters, 190, 64–83. doi:10.1016/j.imlet.2017.07.015
dc.relation.references8. EMA. Abraxane, INN-paclitaxel. Ficha Técnica. Recuperado el 8 de marzo de 2024, de https://ec.europa.eu/health/documents/communityregister/2014/20141027130005/anx_130005_es.pdf
dc.relation.references9. BC Cancer Drug Manual. Paclitaxel, nanoparticle, albumin-bound (NAB) monograph. Recuperado el 8 de marzo de 2024, de http://www.bccancer.bc.ca/drug-databasesite/Drug%20Index/Paclitaxel%20NAB_monograph.pdf
dc.relation.references10. BC Cancer Agency. Doxorubicin pegylated liposomal. Bccancer.bc.ca. Recuperado el 8 de marzo de 2025, de http://www.bccancer.bc.ca/drug-database-site/Drug%20Index/Doxorubicin%20pegylated%20liposomal_monograph.pdf
dc.relation.references11. Boix-Montesinos, P., Soriano-Teruel, P. M., Armiñán, A., Orzáez, M., & Vicent, M. J. The past, present, and future of breast cancer models for nanomedicine development. Advanced Drug Delivery Reviews, 173, 306–330. https://doi.org/10.1016/j.addr.2021.03.018
dc.relation.references12. Oliveira, C., Gonçalves, C. S., Martins, E. P., Neves, N. M., Reis, R. L., Costa, B. M., Silva, T. H., & Martins, A. Fucoidan/chitosan nanoparticles functionalized with anti-ErbB-2 target breast cancer cells and impair tumor growth in vivo. International Journal of Pharmaceutics, 2021, 600(120548), 120548. https://doi.org/10.1016/j.ijpharm.2021.120548
dc.relation.references13. Aljabali, A. A. A., Obeid, M. A., Bakshi, H. A., Alshaer, W., Ennab, R. M., Al-Trad, B., Al Khateeb, W., Al-Batayneh, K. M., Al-Kadash, A., Alsotari, S., Nsairat, H., & Tambuwala, M. M. Synthesis, characterization, and assessment of anti-cancer potential of ZnO nanoparticles in an in vitro model of breast cancer. Molecules (Basel, Swierland), 2022, 27(6), 1827. https://doi.org/10.3390/molecules27061827
dc.relation.references14. Selvam Sathiyavimal, Esteban F Durán-Lara, Seerangaraj Vasantharaj, Mythili Saravanan, Amal Sabour, Maha Alshiekheid, Nguyen Thuy Lan Chi, Kathirvel Brindhadevi, Arivalagan Pugazhendhi. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaves extract and their evaluation of antibacterial, anticancer in human A549 lung and MDA-MB-231 breast cancer cells. Food and Chemical Toxicology, Volume 168, 2022, 113330, ISSN 0278-6915, https://doi.org/10.1016/j.fct.2022.113330
dc.relation.references15. Roy, Arijit & Mitra, Sanchita & Sarkar, Sucheta & Sahu, Ranabir & Nandi, Gouranga & Karunakaran, Gauthaman & Dua, Tarun & Paul, Paramita. Biofabrication of ecofriendly copper oxide nanoparticles and their applications in breast cancer therapy. Inorganic Chemistry Communications. 2023, 160. 111917. 10.1016/j.inoche.2023.111917
dc.relation.references16. Arif Nadaf, Nazeer Hasan, Fauziya, Shadaan Ahmad, Akash Gupta, Dhara Jain, Khalid Imtiyaz, M. Moshahid Alam Rizvi, Gaurav Kumar Jain, Prashant Kesharwani, Farhan J. Ahmad. Leucocyte membrane camouflaged poly-lactic-co-glycolic acid (PLGA) nanoparticles containing cannabidiol and paclitaxel against breast cancer therapy. Process Biochemistry, Volume 142, July 2024, Pages 88-103. https://doi.org/10.1016/j.procbio.2024.04.007
dc.relation.references17. Naveen Rajana, Padakanti Sandeep Chary, Valamla Bhavana, Rajeshwari Deshmukh, Komalatha Dukka, Anamika Sharma, Neelesh Kumar Mehra. Targeted delivery and apoptosis induction of CDK-4/6 inhibitor loaded folic acid decorated lipid-polymer hybrid nanoparticles in breast cancer cells. Int J Pharm. 2024 Feb 15;651:123787. doi: 10.1016/j.ijpharm.2024.123787. Epub 2024 Jan 4. PMID: 38184023.
dc.relation.references18. Sanchita Tripathy, Shagufta Haque, Swapnali Londhe, Sourav Das, Caroline Celine Norbert, Yogesh Chandra, Bojja Sreedhar, Chitta Ranjan Patra. ROS mediated Cu[Fe(CN)5NO] nanoparticles for triple negative breast cancer: A detailed study in preclinical mouse model. Biomaterials Advances, Volume 160, June 2024, 213832. https://doi.org/10.1016/j.bioadv.2024.213832
dc.relation.references19. Niloofar Asadi, Mahmoud Gharbavi, Hamed Rezaeejam, Alireza Farajollahi, Behrooz Johari. Zinc nanoparticles coated with doxorubicin-conjugated alginate as a radiation sensitizer in triple-negative breast cancer cells. International Journal of Pharmaceutics, Volume 659, 25 June 2024, 124285. https://doi.org/10.1016/j.ijpharm.2024.124285
dc.relation.references20. Pallavi C. Choudante, Jhansi Mamilla, Lalithya Kongari, Diana Díaz-García, Sanjiv Prashar, Santiago Gómez-Ruiz, Sunil Misra. Functionalized tin-loaded mesoporous silica nanoparticles for targeted therapy of triple-negative breast cancer: Evaluation of cytogenetic toxicity. Journal of Drug Delivery Science and Technology, Volume 94, April 2024, 105502. https://doi.org/10.1016/j.jddst.2024.105502
dc.relation.references21. Yan Liu, Dan Zhang, Zongquan Zhang, Xiaoya Liang, Xi Yang, Nianhui Ding, Yu Nie, Chunhong Li. Multifunctional nanoparticles inhibit tumor and tumor-associated macrophages for triple-negative breast cancer therapy. Journal of Colloid and Interface Science, Volume 657, March 2024, Pages 598-610. https://doi.org/10.1016/j.jcis.2023.11.156
dc.relation.references22. Andreia Granja, Rita Lima-Sousa, Cátia G. Alves, Duarte de Melo-Diogo, Cláudia Nunes, Célia T. Sousa, Ilídio J. Correia, Salette Reis. Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancer. Biomaterials Advances, Volume 151, August 2023, 213443. https://doi.org/10.1016/j.bioadv.2023.213443
dc.relation.references23. Lina Sun , Cuiling Zuo, Baonan Ma, Xinxin Liu, Yifei Guo, Xiangtao Wang, Meihua Han. Intratumoral injection of two dosage forms of paclitaxel nanoparticles combined with photothermal therapy for breast cancer. Chinese Herbal Medicines, Available online 20 June 2024. https://doi.org/10.1016/j.chmed.2024.06.001
dc.relation.references24. Ramkrishna Sen, Julekha Kazi, Alankar Mukherjee, Biswajit Mukherjee. Folic acid-tripeptide-conjugated synthetic biodegradable nanoparticle-loaded with Ormeloxifene potentially inhibited breast cancer xenograft tumor. Journal of Drug Delivery Science and Technology, Volume 97, August 2024, 105750. https://doi.org/10.1016/j.jddst.2024.105750
dc.relation.references25. N. Shobhana, N. Raghavendra Naveen, Prakash Goudanavar. Magnetic precision: Unleashing the therapeutic potential of paclitaxel-loaded nanoparticles in breast cancer treatment. Oral Oncology Reports, Volume 10, June 2024, 100283. https://doi.org/10.1016/j.oor.2024.100283
dc.relation.references26. Urrejola, Madelein C, Soto, Liliam V, Zumarán, Consuelo C, Peñaloza, Juan Pablo, Álvarez, Beatriz, Fuentevilla, Ignacio, & Haidar, Ziyad S. Sistemas de Nanopartículas Poliméricas II: Estructura, Métodos de Elaboración, Características, Propiedades, Biofuncionalización y Tecnologías de Auto-Ensamblaje Capa por Capa (Layer-by-Layer Self-Assembly). International Journal of Morphology, 2016, 36(4), 1463-1471. https://dx.doi.org/10.4067/S0717-95022018000401463
dc.relation.references27. Kaur I, Ellis LJ, Romer I, Tantra R, Carriere M, Allard S, Mayne-L'Hermite M, Minelli C, Unger W, Potthoff A, Rades S, Valsami-Jones E. Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization. J Vis Exp. 2017 Dec 25;(130):56074. doi: 10.3791/56074. PMID: 29364209; PMCID: PMC5908381.
dc.relation.references28. Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016 Dec;8(4):409-427. doi: 10.1007/s12551-016-0218-6. Epub 2016 Oct 6. PMID: 28510011; PMCID: PMC5425802.
dc.relation.references29. Thermo Fisher Scientific Inc. Microscopios electrónicos. [Online]. Recuperado el 3 de abril de 2024, de https://www.thermofisher.com/co/en/home/materials-science/learning-center/applications/sem-tem-difference.html
dc.relation.references30. Betancur C., Bibiana, Jiménez G., David M., & Linares, Balmes g. Potencial zeta (zeta) como criterio de optimización de dosificación de coagulante en planta de tratamiento de agua potable. Dyna, 2022, 79(175), 166-172. Retrieved April 03, 2025, from http://www.scielo.org.co/scielo.php?script=sci_arext&pid=S0012-73532012000500020&lng=en&tlng=es.
dc.relation.references31. Carissimi G, Montalbán MG, Víllora G, Barth A. Direct Quantification of Drug Loading Content in Polymeric Nanoparticles by Infrared Spectroscopy. Pharmaceutics. 2020 Sep 23;12(10):912. doi: 10.3390/pharmaceutics12100912. PMID: 32977658; PMCID: PMC7598274.
dc.relation.references32. Neil P. Desai & Patrick Soon-Shiong. (2020). Breast cancer therapy based on hormone receptor status with nanoparticles comprising taxane. US10682420B2. Abraxis Bioscience LLC. https://patentimages.storage.googleapis.com/50/2a/c8/be534d8f401b76/US10682420.pdf
dc.relation.references33. Gerald F. Swiss, Jesse vetomir, N. Markovic & Wendy K. Nevala. Methods of treating triple-negative breast cancer using compositions of antibodies and carrier proteins. US11872205B2. Research Mayo Foundation For Medical Education And Vavotar Life Sciences LLC Mayo Foundation for Medical Education and Research. https://patentimages.storage.googleapis.com/66/24/62/97d658d00b1c69/US11872205.pdf
dc.relation.references34. Tagde, P., Najda, A., Nagpal, K., Kulkarni, G. T., Shah, M., Ullah, O., Balant, S., & Rahman, M. H. Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. International Journal of Molecular Sciences, 2022, 23(5), 2856. https://doi.org/10.3390/ijms23052856
dc.relation.references35. V. Rahimkhoei, A.H. Alzaidy, M.J. Abed, S. Rashki, M. Salavati-Niasari, Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics, Adv. Colloid Interface Sci. 329 (2024) 103204.
dc.relation.references36. N. Rajana, A. Mounika, P.S. Chary, V. Bhavana, A. Urati, D. Khatri, S.B. Singh, N. K. Mehra, Multifunctional hybrid nanoparticles in diagnosis and therapy of breast cancer, J. Control. Release 352 (2022) 1024–1047.
dc.relation.references37. Arijit Prosad Roy, Sanchita Mitra, Sucheta Sarkar, Ranabir Sahu, Gouranga Nandi, Gauthaman Karunakaran, Tarun Kumar Dua, Paramita Paul. Biofabrication of ecofriendly copper oxide nanoparticles and their applications in breast cancer therapy, Inorganic Chemistry Communications, Volume 160, 2024, 111917, ISSN 1387-7003, https://doi.org/10.1016/j.inoche.2023.111917
dc.relation.references38. Suvadeep Mal, Subhasis Chakraborty, Monalisa Mahapatra, Kakarla Pakeeraiah, Suvadra Das,Sudhir Kumar Paidesetty and Partha Roy. Tackling breast cancer with gold nanoparticles: twinning synthesis and particle engineering with efficacy. Nanoscale Advances Volume 6, Issue 11, 29 May 2024, Pages 2766-2812. https://doi.org/10.1039/d3na00988b
dc.relation.references39. Yun Lu, Lan Chen, Zhouxue Wu, Ping Zhou, Jie Dai, Jianmei Li, Qian Wen, Yu Fan, Fancai Zeng, Yue Chen, Shaozhi Fu. Self-driven bioactive hybrids co-deliver doxorubicin and indocyanine green nanoparticles for chemo/photothermal therapy of breast cancer. Biomedicine & Pharmacotherapy, Volume 169, 31 December 2023, 115846. https://doi.org/10.1016/j.biopha.2023.115846
dc.relation.references40. S.S. Kunde, S. Wairkar, Targeted delivery of albumin nanoparticles for breast cancer: a review, Colloids Surf. B Biointerfaces 213 (2022), 112422.
dc.relation.references41. Yeruva Sri Pooja, Naveen Rajana, Rati Yadav, Lakshmi Tulasi Naraharisetti, Chandraiah Godugu, Neelesh Kumar Mehra. Design, development, and evaluation of CDK-4/6 inhibitor loaded 4-carboxy phenyl boronic acid conjugated pH-sensitive chitosan lecithin nanoparticles in the management of breast cancer. International Journal of Biological Macromolecules, Volume 258, Part 1, February 2024, 128821. https://doi.org/10.1016/j.ijbiomac.2023.128821
dc.relation.references42. Weiwei Ma, Qiufeng Zhao, Shilong Zhu, Xinyue Wang, Chuangchuang Zhang, Daming Ma, Na Li and Yanyan Yin. Construction of glutathione-responsive paclitaxel prodrug nanoparticles for image-guided targeted delivery and breast cancer therapy. RSC Advances, Volume 14, Issue 18, 16 April 2024, Pages 12796-12806. https://doi.org/10.1039/d4ra00610k
dc.relation.references43. Mariscal Suphalak Khamruang, Pavimol Angsantikul, Pang Zhiqing Nasongkla, Rusnah Syahila Duali Hussen, Soracha D. Thamphiwatana. Biomimetic Targeted Theranostic Nanoparticles for Breast Cancer Treatment. Molecules, volumen 27 número 19 (2022) págs: 6473. https://doi.org/10.3390/molecules27196473
dc.relation.references44. M. Mehta, T.A. Bui, A. Care, W. Deng, Targeted polymer lipid hybrid nanoparticles for in-vitro siRNA therapy in triple-negative breast cancer, Journal of Drug Delivery, Science and Technology, 2024, https://doi.org/10.1016/j.jddst.2024.105911.
dc.relation.references45. ATCC. MCF7-HTB-22. [Online]. Recuperado el 10 de marzo de 2025 de https://www.atcc.org/products/htb-22#detailed-product-information
dc.relation.references46. Sadremomtaz, A., & Dalili, N. Investigating the effects of gold and titania nanoparticles in the treatment of breast cancer using a compressed breast phantom in the presence of high intensity low mono-energetic x-ray radiation. Biomedical Physics & Engineering Express, 9(4). https://doi.org/10.1088/2057-1976/acd386
dc.relation.references47. Moin, A., Wani, S. U. D., Osmani, R. A., Abu Lila, A. S., Khafagy, E.-S., Arab, H. H., Gangadharappa, H. V., & Allam, A. N. Formulation, characterization, and cellular toxicity assessment of tamoxifen-loaded silk fibroin nanoparticles in breast cancer. Drug Delivery, 2021, 28(1), 1626–1636. https://doi.org/10.1080/10717544.2021.1958106
dc.relation.references48. Passos, J. S., Lopes, L. B., & Panitch, A. Collagen-binding nanoparticles for paclitaxel encapsulation and breast cancer treatment. ACS Biomaterials Science & Engineering, 2023, 9(12), 6805–6820. https://doi.org/10.1021/acsbiomaterials.3c01332
dc.relation.references49. Escareño, N., Hassan, N., Kogan, M. J., Juárez, J., Topete, A., & Daneri-Navarro, A. Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells. Journal of Colloid and Interface Science, 2021, 591, 440–450. https://doi.org/10.1016/j.jcis.2021.02.031
dc.relation.references50. Song, Y., Bugada, L., Li, R., Hu, H., Zhang, L., Li, C., Yuan, H., Rajanayake, K. K., Truchan, N. A., Wen, F., Gao, W., & Sun, D. Albumin nanoparticle containing a PI3Kγ inhibitor and paclitaxel in combination with α-PD1 induces tumor remission of breast cancer in mice. Science Translational Medicine, 2022, 14(643), eabl3649. https://doi.org/10.1126/scitranslmed.abl3649
dc.relation.references51. V. Rahimkhoei, A.H. Alzaidy, M.J. Abed, S. Rashki, M. Salavati-Niasari, Advances in inorganic nanoparticles-based drug delivery in targeted breast cancer theranostics, Adv. Colloid Interface Sci. 329 (2024) 103204.
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectCáncer de mama
dc.subjectNanopartículas
dc.subjectQuimioterapia
dc.subjectTerapia dirigida
dc.subjectLiberación controlada
dc.subject.ddc615.19
dc.subject.keywordsBreast cancer
dc.subject.keywordsNanoparticles
dc.subject.keywordsChemotherapy
dc.subject.keywordsTargeted therapy
dc.subject.keywordsControlled release
dc.titleAvances recientes en nanopartículas para el tratamiento del cáncer de mama: métodos de obtención, métodos de caracterización y perspectivas a futuro
dc.title.translatedRecent advances in nanoparticles for the treatment of breast cancer: procurement methods, characterization methods and future perspectives
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
4 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
196.64 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Anexo 1 acta de aprobacion.pdf
Tamaño:
1.3 MB
Formato:
Adobe Portable Document Format
Descripción: