Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote

dc.contributor.advisorEspinosa, José Luis
dc.contributor.authorOrjuela Gongora, Mario Fernando
dc.date.accessioned2024-07-08T19:31:43Z
dc.date.available2024-07-08T19:31:43Z
dc.date.issued2024-05
dc.description.abstractAl día de hoy no existe una normativa nacional que especifique las concentraciones de microplásticos permisibles en los vertimientos de aguas, por lo que muchos procesos dentro de la industria o sistemas de tratamiento de aguas residuales no cuentan con mecanismos específicos para la filtración y separación de los mismos, generando así, grandes problemas medioambientales y de salud. Como propuesta de solución, en este trabajo de grado se presenta el desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio, implementando el mecanismo bioinspirado conocido como separación por rebote presente en las mantarrayas, con un porcentaje de remoción del 89.73% para partículas con un tamaño superior a los 100 μm y velocidades de trabajo máximas de 0,7 m/s. Se evaluó su funcionamiento y eficiencia de filtración de forma computacional y real teniendo en cuenta sus variables críticas de velocidad de flujo, carga de microplásticos y tamaño de partícula. De esta manera, este proyecto presenta un nuevo mecanismo para eliminar rápidamente los microplásticos con una alta eficiencia y aplicabilidad en usos industriales, que es prometedora para remediar este tipo de contaminación del agua.
dc.description.abstractenglishToday there is no national regulation that specifies the concentrations of microplastics permissible in water discharges, so many processes within the industry or wastewater treatment systems do not have specific mechanisms for filtration and separation of them, thus generating major environmental and health problems. As a proposed solution, this degree work presents the development of a functional prototype for microplastic filtration at laboratory scale, implementing the bio-inspired mechanism known as rebound separation present in manta rays, with a removal percentage of 88.8% for particles larger than 100 μm and maximum working speeds of 0.7 m/s. Its performance and filtration efficiency were evaluated computationally and real, taking into account its critical variables of flow velocity, microplastic load and particle size. Thus, this project presents a new mechanism to rapidly remove microplastics with high efficiency and applicability in industrial uses, which is promising for remediating this type of water pollution.
dc.description.degreelevelPregradospa
dc.description.degreenameBioingenierospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlhttps://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12585
dc.language.isoes
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programBioingenieríaspa
dc.relation.referencesAdelmann, B., Schwiddessen, T., Götzendorfer, B., & Hellmann, R. (2022). Evaluation of SLS 3D-Printed Filter Structures Based on Bionic Manta Structures. Materials, 15(23), 8454. https://doi.org/10.3390/ma15238454
dc.relation.referencesAnsys fluent. (2024, 6 febrero). Fluid Simulation Software. https://www.ansys.com/products/fluids/ansys-fluent
dc.relation.referencesAnycubic Tienda oficial | Impresora 3D | Resina | Filamento. (s. f.). ANYCUBIC-ES. https://www.anycubic.es/
dc.relation.referencesBarbosa, F., Adeyemi, J. A., Bocato, M. Z., Comas, A., & Campiglia, A. D. (2020). A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastic studies: From the detection to the toxicological assessment. Environmental Research, 182, 109089. https://doi.org/10.1016/j.envres.2019.109089
dc.relation.referencesBarnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. A. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions Of The Royal Society B, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205
dc.relation.referencesBhave, R. R. (1996). Cross-Flow filtration. En Elsevier eBooks (pp. 271-347). https://doi.org/10.1016/b978-081551407-7.50010-6
dc.relation.referencesBoucher, J., & Friot, D. (2017). Primary microplastics in the oceans: A global evaluation of sources. https://doi.org/10.2305/iucn.ch.2017.01.en
dc.relation.referencesBrowne, M. A. O., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13), 5026-5031. https://doi.org/10.1021/es800249a
dc.relation.referencesCardoza, Y. F. (2005). LA MICROSCOPÍA DE FLUORESCENCIA y SU APLICACIÓN EN EL DIAGNÓSTICO DE BACTERIAS FITOPATÓGENAS. Redalyc, 9(3), 65-68.
dc.relation.referencesChi, D., Chen, A. D., Dorante, M. I., Lee, B. T., & Sacks, J. M. (2020). Plastic Surgery in the Time of COVID-19. Journal Of Reconstructive Microsurgery, 37(02), 124-131. https://doi.org/10.1055/s-0040-1714378
dc.relation.referencesClark, A. C., & San-Miguel, A. (2021). A bioinspired, passive microfluidic lobe filtration system. Lab On A Chip, 21(19), 3762-3774. https://doi.org/10.1039/d1lc00449b
dc.relation.referencesDa Costa, J. P., Reis, V., Paço, A., Costa, M. F., & Rocha-Santos, T. (2019). Micro(nano)plastics – Analytical challenges towards risk evaluation. TrAC Trends In Analytical Chemistry, 111, 173-184. https://doi.org/10.1016/j.trac.2018.12.013
dc.relation.referencesDivi, R. V., Strother, J. A., & Paig-Tran, E. M. (2018). Manta rays feed using ricochet separation, a novel nonclogging filtration mechanism. Science Advances, 4(9). https://doi.org/10.1126/sciadv.aat9533
dc.relation.referencesEnfrin, M., Dumée, L. F., & Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions. Water Research, 161, 621-638. https://doi.org/10.1016/j.watres.2019.06.049
dc.relation.referencesFarrell, P., & Nelson, K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution, 177, 1-3. https://doi.org/10.1016/j.envpol.2013.01.046
dc.relation.referencesFluorescent polystyrene microspheres. (s. f.). Lab 261. https://www.lab261.com/pages/fluorescent-polystyrene-microspheres
dc.relation.referencesFriedman, C. L., Burgess, R. M., Perron, M. M., Cantwell, M. G., Ho, K. T., & Lohmann, R. (2009). Comparing Polychaete and Polyethylene Uptake to Assess Sediment Resuspension Effects on PCB Bioavailability. Environmental Science & Technology, 43(8), 2865-2870. https://doi.org/10.1021/es803695n
dc.relation.referencesFu, W., Min, J., Jiang, W., Li, Y., & Wen, Z. (2020). Separation, characterization and identification of microplastics and nanoplastics in the environment. Science Of The Total Environment, 721, 137561. https://doi.org/10.1016/j.scitotenv.2020.137561
dc.relation.referencesGalafassi, S., Nizzetto, L., & Volta, P. (2019). Plastic sources: A survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water. Science Of The Total Environment, 693, 133499. https://doi.org/10.1016/j.scitotenv.2019.07.305
dc.relation.referencesGies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. https://doi.org/10.1016/j.marpolbul.2018.06.006
dc.relation.referencesGomez, J. W. (2023). Tecnologías avanzadas del tratamiento de agua, una revisión bibliográfica.
dc.relation.referencesGómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G., & Betancourt-Buitrago, L. A. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DOAJ (DOAJ: Directory Of Open Access Journals). https://doaj.org/article/c403867b2f80415783a7bb11b0361c77
dc.relation.referencesGuide to 3D Printing Materials: Types, Applications, and Properties. (s. f.). Formlabs. https://formlabs.com/blog/3d-printing-materials/
dc.relation.referencesHa, J., & Yeo, M. (2018). The environmental effects of microplastics on aquatic ecosystems. Molecular & Cellular Toxicology, 14(4), 353-359. https://doi.org/10.1007/s13273-018-0039-8
dc.relation.referencesHabib, R. Z., Kendi, R. A., & Thiemann, T. (2021). The Effect of Wastewater Treatment Plants on Retainment of Plastic Microparticles to Enhance Water Quality—A Review. Journal Of Environmental Protection, 12(03), 161-195. https://doi.org/10.4236/jep.2021.123011
dc.relation.referencesHopewell, J., Dvorak, R. G., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions Of The Royal Society B, 364(1526), 2115-2126. https://doi.org/10.1098/rstb.2008.0311
dc.relation.referencesKoelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M., & De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research, 155, 410-422. https://doi.org/10.1016/j.watres.2019.02.054
dc.relation.referencesLaist, D. W. (1997). Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records. En Springer series on environmental management (pp. 99-139). https://doi.org/10.1007/978-1-4613-8486-1_10
dc.relation.referencesLam, C. S., Ramanathan, S., Carbery, M., Gray, K. F., Vanka, K. S., Maurin, C., Bush, R. T., & Thavamani, P. (2018). A Comprehensive Analysis of Plastics and Microplastic Legislation Worldwide. Water, Air, & Soil Pollution, 229(11). https://doi.org/10.1007/s11270-018-4002-z
dc.relation.referencesLee, H. S., Shim, J. E., Park, I. H., Choo, K. S., & Yeo, M. (2022). Physical and biomimetic treatment methods to reduce microplastic waste accumulation. Molecular & Cellular Toxicology, 19(1), 13-25. https://doi.org/10.1007/s13273-022-00289-z
dc.relation.referencesLee, W. S., Cho, H., Kim, E., Huh, Y. H., Kim, H., Kim, B., Kang, T., Lee, J., & Jeong, J. (2019). Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale, 11(7), 3173-3185. https://doi.org/10.1039/c8nr09321k
dc.relation.referencesLehner, R., Weder, C., Petri‐Fink, A., & Rothen‐Rutishauser, B. (2019). Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environmental Science & Technology, 53(4), 1748-1765. https://doi.org/10.1021/acs.est.8b05512
dc.relation.referencesLu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., & Ren, H. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environmental Science & Technology, 50(7), 4054-4060. https://doi.org/10.1021/acs.est.6b00183
dc.relation.referencesLv, P., Hu, B., Hua, R., Zhang, J., Zhang, H., Liu, Z., Xu, L., He, Z., Li, X., Guo, M., Pan, K., Zhang, Z., Zeng, Q., Wu, Z., Sun, L., Guo, M., Zhou, L., Xu, X., Yu, B., . . . Li, Y.(2022). A novelly designed protein antagonist confers potent neutralization against SARS-CoV-2 variants of concern. Journal Of Infection, 85(3), e72-e76. https://doi.org/10.1016/j.jinf.2022.06.001
dc.relation.referencesMcCarthy, J., Gong, X., Nahirney, D., Duszyk, M., & Radomski, M. W. (2011). Polystyrene nanoparticles activate ion transport in human airway epithelial cells. International Journal Of Nanomedicine, 1343. https://doi.org/10.2147/ijn.s21145
dc.relation.referencesMurphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. https://doi.org/10.1021/acs.est.5b05416
dc.relation.referencesOkoffo, E. D., O’Brien, S., O’Brien, J., Tscharke, B. J., & Thomas, K. V. (2019a). Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. Environmental Science, 5(11), 1908-1931. https://doi.org/10.1039/c9ew00428a
dc.relation.referencesRossi, G., Barnoud, J., & Monticelli, L. (2013). Polystyrene nanoparticles perturb lipid membranes. The Journal Of Physical Chemistry Letters, 5(1), 241-246. https://doi.org/10.1021/jz402234c
dc.relation.referencesSanderson, S. L., Cheer, A. Y., Goodrich, J. S., Graziano, J. D., & Callan, W. T. (2001). Crossflow filtration in suspension-feeding fishes. Nature, 412(6845), 439-441. https://doi.org/10.1038/35086574
dc.relation.referencesSankrityayan, P., & Biswas, S. (2022). Plastic Filtration and Decomposition According to Ricochet Filtering Mechanism Using Ideonella sakaiensis. Frontiers In Marine Science, 9. https://doi.org/10.3389/fmars.2022.919743
dc.relation.referencesSchwaferts, C., Nießner, R., Elsner, M., & Ivleva, N. P. (2019a). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends In Analytical Chemistry, 112, 52-65. https://doi.org/10.1016/j.trac.2018.12.014
dc.relation.referencesShahbazi, M., Ghalkhani, M., & Maleki, H. (2020). Directional Freeze‐Casting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications. Advanced Engineering Materials, 22(7). https://doi.org/10.1002/adem.202000033
dc.relation.referencesSol, D., Laca, A., Laca, A., & DıÁ z, M. (2020a). Approaching the environmental problem of microplastics: Importance of WWTP treatments. Science Of The Total Environment, 740, 140016. https://doi.org/10.1016/j.scitotenv.2020.140016
dc.relation.referencesSun, J., Dai, X., Wang, Q., Van Loosdrecht, M. C., & Ni, B. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. https://doi.org/10.1016/j.watres.2018.12.050
dc.relation.referencesTalvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164-172. https://doi.org/10.1016/j.watres.2016.11.046
dc.relation.referencesThompson, R. C., Olsen, Y. S., Mitchell, R. P., Davis, A., Rowland, S. J., John, A., McGonigle, D. F., & Russell, A. E. (2004). Lost at Sea: Where Is All the Plastic? Science, 304(5672), 838. https://doi.org/10.1126/science.1094559
dc.relation.referencesVermaire, J. C., Pomeroy, C., Herczegh, S. M., Haggart, O., & Murphy, M. A. (2017). Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets, 2(1), 301-314. https://doi.org/10.1139/facets-2016-0070
dc.relation.referencesVidal, F. J. R. (2003). Procesos de potabilización del agua e influencia del tratamiento de ozonización. Ediciones Díaz de Santos.
dc.relation.referencesYoon, J., Yoon, Y., Yun, S. L., & Lee, W. (2021). The Current State of Management and Disposal of Wastes Related to COVID-19 : A review. Journal Of Korean Society Of Environmental Engineers, 43(12), 739-746. https://doi.org/10.4491/ksee.2021.43.12.739
dc.relation.referencesZhang, X., Li, H., Zhu, C., Huang, X., Greiner, A., & Xu, Z. (2022). Biomimetic gill-inspired membranes with direct-through micropores for water remediation by efficiently removing microplastic particles. Chemical Engineering Journal, 434, 134758. https://doi.org/10.1016/j.cej.2022.134758
dc.relation.referencesZhang, H., et al. (2018). Removal of microplastics from water environment by adsorption process: A review. Chemical Engineering Journal, 359, 180-195.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.subjectMicroplásticos
dc.subjectFiltración
dc.subjectBioinspiración
dc.subject.ddc610.28
dc.subject.keywordsMicroplastics
dc.subject.keywordsFiltration
dc.subject.keywordsBioinspiration
dc.titleDesarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote
dc.title.translatedDevelopment of a functional prototype for laboratory scale filtration of microplastics using the bioinspired rebound separation mechanism
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa

Archivos

Bloque original
Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
23.2 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Anexo 1. Planos del prototipo.pdf
Tamaño:
689.3 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
Anexo 2. Manual de usuario.pdf
Tamaño:
1.37 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorización.pdf
Tamaño:
151.42 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Anexo 3. Carta de aprobación.pdf
Tamaño:
309.24 KB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones