Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote
dc.contributor.advisor | Espinosa, José Luis | |
dc.contributor.author | Orjuela Gongora, Mario Fernando | |
dc.date.accessioned | 2024-07-08T19:31:43Z | |
dc.date.available | 2024-07-08T19:31:43Z | |
dc.date.issued | 2024-05 | |
dc.description.abstract | Al día de hoy no existe una normativa nacional que especifique las concentraciones de microplásticos permisibles en los vertimientos de aguas, por lo que muchos procesos dentro de la industria o sistemas de tratamiento de aguas residuales no cuentan con mecanismos específicos para la filtración y separación de los mismos, generando así, grandes problemas medioambientales y de salud. Como propuesta de solución, en este trabajo de grado se presenta el desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio, implementando el mecanismo bioinspirado conocido como separación por rebote presente en las mantarrayas, con un porcentaje de remoción del 89.73% para partículas con un tamaño superior a los 100 μm y velocidades de trabajo máximas de 0,7 m/s. Se evaluó su funcionamiento y eficiencia de filtración de forma computacional y real teniendo en cuenta sus variables críticas de velocidad de flujo, carga de microplásticos y tamaño de partícula. De esta manera, este proyecto presenta un nuevo mecanismo para eliminar rápidamente los microplásticos con una alta eficiencia y aplicabilidad en usos industriales, que es prometedora para remediar este tipo de contaminación del agua. | |
dc.description.abstractenglish | Today there is no national regulation that specifies the concentrations of microplastics permissible in water discharges, so many processes within the industry or wastewater treatment systems do not have specific mechanisms for filtration and separation of them, thus generating major environmental and health problems. As a proposed solution, this degree work presents the development of a functional prototype for microplastic filtration at laboratory scale, implementing the bio-inspired mechanism known as rebound separation present in manta rays, with a removal percentage of 88.8% for particles larger than 100 μm and maximum working speeds of 0.7 m/s. Its performance and filtration efficiency were evaluated computationally and real, taking into account its critical variables of flow velocity, microplastic load and particle size. Thus, this project presents a new mechanism to rapidly remove microplastics with high efficiency and applicability in industrial uses, which is promising for remediating this type of water pollution. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bioingeniero | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/12585 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Bioingeniería | spa |
dc.relation.references | Adelmann, B., Schwiddessen, T., Götzendorfer, B., & Hellmann, R. (2022). Evaluation of SLS 3D-Printed Filter Structures Based on Bionic Manta Structures. Materials, 15(23), 8454. https://doi.org/10.3390/ma15238454 | |
dc.relation.references | Ansys fluent. (2024, 6 febrero). Fluid Simulation Software. https://www.ansys.com/products/fluids/ansys-fluent | |
dc.relation.references | Anycubic Tienda oficial | Impresora 3D | Resina | Filamento. (s. f.). ANYCUBIC-ES. https://www.anycubic.es/ | |
dc.relation.references | Barbosa, F., Adeyemi, J. A., Bocato, M. Z., Comas, A., & Campiglia, A. D. (2020). A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastic studies: From the detection to the toxicological assessment. Environmental Research, 182, 109089. https://doi.org/10.1016/j.envres.2019.109089 | |
dc.relation.references | Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. A. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions Of The Royal Society B, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205 | |
dc.relation.references | Bhave, R. R. (1996). Cross-Flow filtration. En Elsevier eBooks (pp. 271-347). https://doi.org/10.1016/b978-081551407-7.50010-6 | |
dc.relation.references | Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: A global evaluation of sources. https://doi.org/10.2305/iucn.ch.2017.01.en | |
dc.relation.references | Browne, M. A. O., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13), 5026-5031. https://doi.org/10.1021/es800249a | |
dc.relation.references | Cardoza, Y. F. (2005). LA MICROSCOPÍA DE FLUORESCENCIA y SU APLICACIÓN EN EL DIAGNÓSTICO DE BACTERIAS FITOPATÓGENAS. Redalyc, 9(3), 65-68. | |
dc.relation.references | Chi, D., Chen, A. D., Dorante, M. I., Lee, B. T., & Sacks, J. M. (2020). Plastic Surgery in the Time of COVID-19. Journal Of Reconstructive Microsurgery, 37(02), 124-131. https://doi.org/10.1055/s-0040-1714378 | |
dc.relation.references | Clark, A. C., & San-Miguel, A. (2021). A bioinspired, passive microfluidic lobe filtration system. Lab On A Chip, 21(19), 3762-3774. https://doi.org/10.1039/d1lc00449b | |
dc.relation.references | Da Costa, J. P., Reis, V., Paço, A., Costa, M. F., & Rocha-Santos, T. (2019). Micro(nano)plastics – Analytical challenges towards risk evaluation. TrAC Trends In Analytical Chemistry, 111, 173-184. https://doi.org/10.1016/j.trac.2018.12.013 | |
dc.relation.references | Divi, R. V., Strother, J. A., & Paig-Tran, E. M. (2018). Manta rays feed using ricochet separation, a novel nonclogging filtration mechanism. Science Advances, 4(9). https://doi.org/10.1126/sciadv.aat9533 | |
dc.relation.references | Enfrin, M., Dumée, L. F., & Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions. Water Research, 161, 621-638. https://doi.org/10.1016/j.watres.2019.06.049 | |
dc.relation.references | Farrell, P., & Nelson, K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution, 177, 1-3. https://doi.org/10.1016/j.envpol.2013.01.046 | |
dc.relation.references | Fluorescent polystyrene microspheres. (s. f.). Lab 261. https://www.lab261.com/pages/fluorescent-polystyrene-microspheres | |
dc.relation.references | Friedman, C. L., Burgess, R. M., Perron, M. M., Cantwell, M. G., Ho, K. T., & Lohmann, R. (2009). Comparing Polychaete and Polyethylene Uptake to Assess Sediment Resuspension Effects on PCB Bioavailability. Environmental Science & Technology, 43(8), 2865-2870. https://doi.org/10.1021/es803695n | |
dc.relation.references | Fu, W., Min, J., Jiang, W., Li, Y., & Wen, Z. (2020). Separation, characterization and identification of microplastics and nanoplastics in the environment. Science Of The Total Environment, 721, 137561. https://doi.org/10.1016/j.scitotenv.2020.137561 | |
dc.relation.references | Galafassi, S., Nizzetto, L., & Volta, P. (2019). Plastic sources: A survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water. Science Of The Total Environment, 693, 133499. https://doi.org/10.1016/j.scitotenv.2019.07.305 | |
dc.relation.references | Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. https://doi.org/10.1016/j.marpolbul.2018.06.006 | |
dc.relation.references | Gomez, J. W. (2023). Tecnologías avanzadas del tratamiento de agua, una revisión bibliográfica. | |
dc.relation.references | Gómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G., & Betancourt-Buitrago, L. A. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DOAJ (DOAJ: Directory Of Open Access Journals). https://doaj.org/article/c403867b2f80415783a7bb11b0361c77 | |
dc.relation.references | Guide to 3D Printing Materials: Types, Applications, and Properties. (s. f.). Formlabs. https://formlabs.com/blog/3d-printing-materials/ | |
dc.relation.references | Ha, J., & Yeo, M. (2018). The environmental effects of microplastics on aquatic ecosystems. Molecular & Cellular Toxicology, 14(4), 353-359. https://doi.org/10.1007/s13273-018-0039-8 | |
dc.relation.references | Habib, R. Z., Kendi, R. A., & Thiemann, T. (2021). The Effect of Wastewater Treatment Plants on Retainment of Plastic Microparticles to Enhance Water Quality—A Review. Journal Of Environmental Protection, 12(03), 161-195. https://doi.org/10.4236/jep.2021.123011 | |
dc.relation.references | Hopewell, J., Dvorak, R. G., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions Of The Royal Society B, 364(1526), 2115-2126. https://doi.org/10.1098/rstb.2008.0311 | |
dc.relation.references | Koelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M., & De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research, 155, 410-422. https://doi.org/10.1016/j.watres.2019.02.054 | |
dc.relation.references | Laist, D. W. (1997). Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records. En Springer series on environmental management (pp. 99-139). https://doi.org/10.1007/978-1-4613-8486-1_10 | |
dc.relation.references | Lam, C. S., Ramanathan, S., Carbery, M., Gray, K. F., Vanka, K. S., Maurin, C., Bush, R. T., & Thavamani, P. (2018). A Comprehensive Analysis of Plastics and Microplastic Legislation Worldwide. Water, Air, & Soil Pollution, 229(11). https://doi.org/10.1007/s11270-018-4002-z | |
dc.relation.references | Lee, H. S., Shim, J. E., Park, I. H., Choo, K. S., & Yeo, M. (2022). Physical and biomimetic treatment methods to reduce microplastic waste accumulation. Molecular & Cellular Toxicology, 19(1), 13-25. https://doi.org/10.1007/s13273-022-00289-z | |
dc.relation.references | Lee, W. S., Cho, H., Kim, E., Huh, Y. H., Kim, H., Kim, B., Kang, T., Lee, J., & Jeong, J. (2019). Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale, 11(7), 3173-3185. https://doi.org/10.1039/c8nr09321k | |
dc.relation.references | Lehner, R., Weder, C., Petri‐Fink, A., & Rothen‐Rutishauser, B. (2019). Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environmental Science & Technology, 53(4), 1748-1765. https://doi.org/10.1021/acs.est.8b05512 | |
dc.relation.references | Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., & Ren, H. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environmental Science & Technology, 50(7), 4054-4060. https://doi.org/10.1021/acs.est.6b00183 | |
dc.relation.references | Lv, P., Hu, B., Hua, R., Zhang, J., Zhang, H., Liu, Z., Xu, L., He, Z., Li, X., Guo, M., Pan, K., Zhang, Z., Zeng, Q., Wu, Z., Sun, L., Guo, M., Zhou, L., Xu, X., Yu, B., . . . Li, Y.(2022). A novelly designed protein antagonist confers potent neutralization against SARS-CoV-2 variants of concern. Journal Of Infection, 85(3), e72-e76. https://doi.org/10.1016/j.jinf.2022.06.001 | |
dc.relation.references | McCarthy, J., Gong, X., Nahirney, D., Duszyk, M., & Radomski, M. W. (2011). Polystyrene nanoparticles activate ion transport in human airway epithelial cells. International Journal Of Nanomedicine, 1343. https://doi.org/10.2147/ijn.s21145 | |
dc.relation.references | Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. https://doi.org/10.1021/acs.est.5b05416 | |
dc.relation.references | Okoffo, E. D., O’Brien, S., O’Brien, J., Tscharke, B. J., & Thomas, K. V. (2019a). Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. Environmental Science, 5(11), 1908-1931. https://doi.org/10.1039/c9ew00428a | |
dc.relation.references | Rossi, G., Barnoud, J., & Monticelli, L. (2013). Polystyrene nanoparticles perturb lipid membranes. The Journal Of Physical Chemistry Letters, 5(1), 241-246. https://doi.org/10.1021/jz402234c | |
dc.relation.references | Sanderson, S. L., Cheer, A. Y., Goodrich, J. S., Graziano, J. D., & Callan, W. T. (2001). Crossflow filtration in suspension-feeding fishes. Nature, 412(6845), 439-441. https://doi.org/10.1038/35086574 | |
dc.relation.references | Sankrityayan, P., & Biswas, S. (2022). Plastic Filtration and Decomposition According to Ricochet Filtering Mechanism Using Ideonella sakaiensis. Frontiers In Marine Science, 9. https://doi.org/10.3389/fmars.2022.919743 | |
dc.relation.references | Schwaferts, C., Nießner, R., Elsner, M., & Ivleva, N. P. (2019a). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends In Analytical Chemistry, 112, 52-65. https://doi.org/10.1016/j.trac.2018.12.014 | |
dc.relation.references | Shahbazi, M., Ghalkhani, M., & Maleki, H. (2020). Directional Freeze‐Casting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications. Advanced Engineering Materials, 22(7). https://doi.org/10.1002/adem.202000033 | |
dc.relation.references | Sol, D., Laca, A., Laca, A., & DıÁ z, M. (2020a). Approaching the environmental problem of microplastics: Importance of WWTP treatments. Science Of The Total Environment, 740, 140016. https://doi.org/10.1016/j.scitotenv.2020.140016 | |
dc.relation.references | Sun, J., Dai, X., Wang, Q., Van Loosdrecht, M. C., & Ni, B. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. https://doi.org/10.1016/j.watres.2018.12.050 | |
dc.relation.references | Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164-172. https://doi.org/10.1016/j.watres.2016.11.046 | |
dc.relation.references | Thompson, R. C., Olsen, Y. S., Mitchell, R. P., Davis, A., Rowland, S. J., John, A., McGonigle, D. F., & Russell, A. E. (2004). Lost at Sea: Where Is All the Plastic? Science, 304(5672), 838. https://doi.org/10.1126/science.1094559 | |
dc.relation.references | Vermaire, J. C., Pomeroy, C., Herczegh, S. M., Haggart, O., & Murphy, M. A. (2017). Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets, 2(1), 301-314. https://doi.org/10.1139/facets-2016-0070 | |
dc.relation.references | Vidal, F. J. R. (2003). Procesos de potabilización del agua e influencia del tratamiento de ozonización. Ediciones Díaz de Santos. | |
dc.relation.references | Yoon, J., Yoon, Y., Yun, S. L., & Lee, W. (2021). The Current State of Management and Disposal of Wastes Related to COVID-19 : A review. Journal Of Korean Society Of Environmental Engineers, 43(12), 739-746. https://doi.org/10.4491/ksee.2021.43.12.739 | |
dc.relation.references | Zhang, X., Li, H., Zhu, C., Huang, X., Greiner, A., & Xu, Z. (2022). Biomimetic gill-inspired membranes with direct-through micropores for water remediation by efficiently removing microplastic particles. Chemical Engineering Journal, 434, 134758. https://doi.org/10.1016/j.cej.2022.134758 | |
dc.relation.references | Zhang, H., et al. (2018). Removal of microplastics from water environment by adsorption process: A review. Chemical Engineering Journal, 359, 180-195. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.subject | Microplásticos | |
dc.subject | Filtración | |
dc.subject | Bioinspiración | |
dc.subject.ddc | 610.28 | |
dc.subject.keywords | Microplastics | |
dc.subject.keywords | Filtration | |
dc.subject.keywords | Bioinspiration | |
dc.title | Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote | |
dc.title.translated | Development of a functional prototype for laboratory scale filtration of microplastics using the bioinspired rebound separation mechanism | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
Archivos
Bloque original
1 - 3 de 3
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 23.2 MB
- Formato:
- Adobe Portable Document Format
Cargando...
- Nombre:
- Anexo 1. Planos del prototipo.pdf
- Tamaño:
- 689.3 KB
- Formato:
- Adobe Portable Document Format
Cargando...
- Nombre:
- Anexo 2. Manual de usuario.pdf
- Tamaño:
- 1.37 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorización.pdf
- Tamaño:
- 151.42 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 3. Carta de aprobación.pdf
- Tamaño:
- 309.24 KB
- Formato:
- Adobe Portable Document Format
- Descripción: