Cosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISA

dc.contributor.advisorBonilla Rivera, Alexander
dc.contributor.authorPiraneque Tenjica, Johan Stiwer
dc.date.accessioned2025-06-09T20:49:38Z
dc.date.available2025-06-09T20:49:38Z
dc.date.issued2023-12
dc.description.abstractLos procesos gaussianos (GP) nos proveen de una gran alternativa, independiente del modelo físico, con el fin de obtener información cosmológica relevante a partir de datos observacionales. En la presente tesis, se utilizaron GP para realizar un análisis conjunto a partir de datos cosmológicos como Supernova Tipo Ia (SN), Cronómetros Cósmicos (CC), Oscilaciones Acústicas Bariónicas (BAO) y una simulación de puntos de datos como sirenas estándar de ondas gravitacionales (GWs) del proyecto Laser Interferometer Space Antena (LISA) de la Agencia Espacial Europea (ESA), con el fin de restringir los principales parámetros cosmológicos del modelo estándar ΛCDM, tales como la tasa de expansión del universo H₀ y reconstruir algunas propiedades de la energía oscura (DE), la ecuación del parámetro de estado ω, la velocidad del sonido de las perturbaciones de DE c²ₛ y la evolución de la densidad de DE X con el tiempo cosmológico. Se compararon los valores de H₀, la distancia comovil normalizada D(z) y su derivada D'(z) obtenidos con los distintos kernels planteados para el GP, tanto con los datos SN+CC+BAO como con SN+CC+BAO+LISA. Del análisis conjunto SN+CC+BAO+LISA, se obtuvo que H₀ está restringido a una precisión de 1% con H₀ = 69.035 ± 1.151 km s⁻¹ Mpc⁻¹. En lo referente a los parámetros DE, para el corrimiento al rojo z=0 se encontraron los valores de ω(z = 0)=-0.981 ± 0.062 y c²ₛ(z=0)=-0.275 ± 0.066. Además, se halló c²ₛ < 0 en ∼2σ CL con desplazamientos al rojo altos.
dc.description.abstractenglishGaussian processes (GP) provide us with a great alternative, independent of the physical model, in order to obtain relevant cosmological information from observational data. In the present thesis, GPs were used to perform a joint analysis from cosmological data such as Type Ia Supernova (SN), Cosmic Chronometers (CC), Baryon Acoustic Oscillations (BAO) and a simulation of data points such as standard wave sirens. gravitational forces (GWs) of the Laser Interferometer Space Antenna (LISA) project of the European Space Agency (ESA), in order to constrain the main cosmological parameters of the standard model ΛCDM, such as the expansion rate of the universe H₀ and reconstruct some properties of dark energy (DE), the equation of the state parameter ω, the speed of sound from DE perturbations c²ₛ and the evolution of the DE density X with the cosmological time. The values of H₀, the normalized comove distance D(z) and its derivative D'(z) obtained with the different kernels proposed for the GP were compared, both with the SN+CC+BAO data and with SN+CC+BAO+LISA. From the joint SN+CC+BAO+LISA analysis, it was obtained that H₀ is restricted to a precision of 1% with H₀ = 69.035 ± 1.151 km s⁻¹ Mpc⁻¹. Regarding the DE parameters, for the redshift z=0 the values of ω(z = 0)=-0.981 ± 0.062 and c²ₛ(z=0)=-0.275 ± 0.066 were found. Furthermore, c²ₛ < 0 was found in ∼2σ CL at high redshifts.
dc.description.degreelevelPregradospa
dc.description.degreenameMatemáticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/14611
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programMatemáticasspa
dc.relation.references[1] A.G. Riess, et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron.J.1161009, 1009(1998).9805201
dc.relation.references[2] S. Perlmutter et al. [Supernova Cosmology Project], Measurements of Ω and Λ from 42 High-Redshift Supernovae, Astrophys. J. 517, 565, (1999). 9812133
dc.relation.references[3] S. Alam et al. [BOSS], The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470, 2617 (2017). 1607.03155
dc.relation.references[4] S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61, 1 (1989).
dc.relation.references[5] T. Padmanabhan, Cosmological constant: The Weight of the vacuum, Phys. Rept. 380, 235 (2003). 0212290
dc.relation.references[6] R. Bousso, TASI Lectures on the Cosmological Constant, Gen. Rel. Grav. 40, 607 (2008). 0708.423
dc.relation.references[7] D. Huterer, D.L. Shafer, Dark energy two decades after: Observables, probes, consistency tests, Rep. Prog. Phys. 81, 016901 (2017). 1709.01091
dc.relation.references[8] S. Capozziello, R. D’Agostino, O. Luongo, Extended Gravity Cosmography, Int. J Mod. Phys. D, 28, 1930016 (2019). 1904.01427
dc.relation.references[9] M. Ishak, Testing General Relativity in Cosmology, Living Rev. Rel. 1, 22 (2019). 1806.10122
dc.relation.references[10] N. Aghanim et al. (Planck Collaboration), Planck 2018 results. VI. Cosmo- logical parameters, 1807.06209
dc.relation.references[11] A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1 % Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876, 1 (2019). 1903.07603
dc.relation.references[12] S. Birrer et al., TDCOSMO IV: Hierarchical time-delay cosmography – joint inference of the Hubble constant and galaxy density profiles, 2007.02941
dc.relation.references[13] W.L. Freedman et al., The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch, 1907.05922
dc.relation.references[14] L. Verde, T. Treu, A.G. Riess, Tensions between the early and late Universe, Nature Astronomy 3, 891 (2019). 1907.10625
dc.relation.references[15] V. Poulin, T.L. Smith, T. Karwal, M. Kamionkowski, Early Dark Energy Can Resolve The Hubble Tension, Phys. Rev. Lett. 122, 221301 (2019). 1811.04083
dc.relation.references[16] E. M ̈ortsell, S. Dhawan, Does the Hubble constant tension call for new physics?, J. Cosmol. Astrop. Phys. 09, 025 (2018). 1801.07260
dc.relation.references[17] R. Arjona, S. Nesseris, Hints of dark energy anisotropic stress using Machine Learning, 2001.11420
dc.relation.references[18] C. Cattoen, M. Visser, Cosmographic Hubble fits to the supernova data, Phys. Rev. D 78, 063501 (2008). 0809.0537
dc.relation.references[19] S. Capozziello, R. D’Agostino, O. Luongo, Cosmographic analysis with Chebyshev polynomials, Mon. Not. Roy. Astron. Soc. 476, 3924 (2018). 1712.04380
dc.relation.references[20] C. Cattoen, M. Visser, The Hubble series: Convergence properties and redshift variables, Class. Quant. Grav. 24, 5985 (2007). 0710.1887
dc.relation.references[21] E.M. Barboza Jr., F. Carvalho, A kinematic method to probe cosmic acceleration, Phys. Lett. B 715, 19 (2012).
dc.relation.references[22] Allahyari, Alireza and Nunes, Rafael C. and Mota, David F., No slip gravity in light of LISA standard sirens, Mon. Not. Roy. Astron. Soc. (2022). 2110.07634
dc.relation.references[23] A.G. Riess, et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron.J.1161009,1009(1998).9805201
dc.relation.references[24] M. Seikel, C. Clarkson, M. Smith, Reconstruction of dark energy and expansion dynamics using Gaussian processes, J. Cosmol. Astrop. Phys. 07, 036 (2012). 1204.2832
dc.relation.references[25] M. Seikel, C. Clarkson, Optimising Gaussian processes for reconstructing dark energy dynamics from supernovae, 1311.6678
dc.relation.references[26] A. Shafieloo, A.G. Kim, E.V. Linder, Gaussian process cosmography, Phys. Rev. D 85, 123530 (2012). 1204.2272
dc.relation.references[27] R.G. Cai, N. Tamanini, T. Yang, Reconstructing the dark sector interaction with LISA, J. Cosmol. Astrop. Phys. 05, 031 (2017). 1703.07323
dc.relation.references[28] M.J. Zhang, H. Li, Gaussian processes reconstruction of dark energy from observational data, Eur. Phys. J. C 78, 460 (2018). 1806.02981
dc.relation.references[29] Ade, P. A. R. et al. (2016a). Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys., 594:A13.
dc.relation.references[30] Hogg, D. W. (1999). Distance measures in cosmology.
dc.relation.references[31] Vagnozzi, Sunny (2020). Overview of Physical Cosmology. Springer International Publishing, Pg. 37–63.
dc.relation.references[32] Etherington, I. M. H. (1933). On the Definition of Distance in General Relativity. Philosophical Magazine, 15.
dc.relation.references[33] E. Di Valentino et al., “Cosmology Intertwined II: The Hubble Constant Tension,” arXiv:2008.11284 [astro-ph.CO].
dc.relation.references[34] A. De Gouvˆea, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen, “Fundamental physics with the diffuse supernova background neutrinos,” Phys. Rev. D 102 (2020), 123012 doi:10.1103/PhysRevD.102.123012 [arXiv:2007.13748 [hep-ph]].
dc.relation.references[35] Hirata, K. and 22 colleagues 1987. Observation of a neutrino burst from the supernova SN1987A. Physical Review Letters 58, 1490–1493. doi:10.1103/PhysRevLett.58.1490
dc.relation.references[36] Sandage, A. (1962). The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes. The Astrophysical Journal, 136:319.
dc.relation.references[37] McVittie, G. C. (1962). Appendix to The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes. The Astrophysical Journal, 136:334.
dc.relation.references[38] Piattella, O. F. and Giani, L. (2017). Redshift drift of gravitational lensing. Phys. Rev., D95(10):101301.
dc.relation.references[39] Avelino, A. and Kirshner, R. P. (2016). The dimensionless age of the Universe: a riddle for our time. Astrophys. J., 828(1):35.
dc.relation.references[40] Riess, A. G. et al. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J., 116:1009-1038.
dc.relation.references[41] Perlmutter, S. et al. (1999). Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J., 517:565–586.
dc.relation.references[42] M. Moresco et al., A 6% measurement of the hubble parameter at z ∼ 0,45: direct evidence of the epoch of cosmic re-acceleration, J. Cosmol. Astrop. Phys. 05, 014 (2016). 1601.01701
dc.relation.references[43] S. Alam et al. [BOSS], The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470, 2617 (2017). 1607.03155
dc.relation.references[44] G.-B. Zhao et al., The clustering of the sdss-iv extended baryon oscillation spectroscopic survey dr14 quasar sample: a tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights, Mon. Not. Roy. Astron. Soc. 482, 3497 (2019). 1801.03043
dc.relation.references[45] H. du Mas des Bourboux et al., The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Baryon acoustic oscillations with Lyman-α forests, 2007.08995
dc.relation.references[46] H. du Mas des Bourboux et al., Baryon acoustic oscillations from the complete sdss-iii lyα-quasar cross-correlation function at z = 2,4, Astron. Astrophys. 608, A130 (2017). 1708.02225
dc.relation.references[47] D. Scolnic et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 859, 101 (2018). 1710.00845
dc.relation.references[48] A.G. Riess et al., Type Ia Supernova Distances at Redshift > 1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate, Astrophys. J. 853, 126 (2018). 1710.00844
dc.relation.references[49] B.S. Haridasu, V.V. Lukovi´ c, M. Moresco, N. Vittorio, An improved model-independent assessment of the late-time cosmic expansion, J. Cosmol. Astrop. Phys. 10, 015 (2018). 1805.03595
dc.relation.references[50] V. Sahni, A. Shafieloo, A.A. Starobinsky, Two new diagnostics of dark energy, Phys. Rev. D 78, 103502 (2008). 0807.3548
dc.relation.references[51] T.M.C. Abbott et al., (DES Collaboration), Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data, Mon. Not. Roy. Astron. Soc. 480 3 (2018). 1711.00403
dc.relation.references[52] O.H.E. Philcox, M.M. Ivanov, M. Simonovic, M. Zaldarriaga, Combining Full-Shape and BAO Analyses of Galaxy Power Spectra: A 1.6% CMB-independent constraint on H0, J. Cosmol. Astrop. Phys. 05, 032 (2020). 2002.04035
dc.relation.references[53] K.C. Wong et al., (H0LiCOW Collaboration), H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3σ tension between early and late-Universe probes, 1907.04869
dc.relation.references[54] T. Delubac et al. [BOSS], Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars, Astron. Astrophys. 574, A59 (2015). 1404.1801
dc.relation.references[55] É. Aubourg et al. [BOSS], Cosmological implications of baryon acoustic oscillation measurements, Phys. Rev. D 92, 123516 (2015). 1411.1074
dc.relation.references[56] B. Boisseau, G. Esposito-Farese, D. Polarski, A.A. Starobinsky, Reconstruction of a scalar tensor theory of gravity in an accelerating universe, Phys. Rev. Lett. 85, 2236 (2000). 0001066
dc.relation.references[57] V. Sahni, A. Starobinsky, Reconstructing Dark Energy, Int. J. Mod. Phys. D 15, 2105 (2006). 0610026
dc.relation.references[58] A.D. Dolgov, Field Model With A Dynamic Cancellation Of The Cosmological Constant, JETP Lett. 41, 345 (1985).
dc.relation.references[59] P. Brax, C. van de Bruck, Cosmology and brane worlds: A Review, Class. Quant. Grav. 20, R201 (2003). 0303095
dc.relation.references[60] Ö. Akarsu, N. Katırcı, S. Kumar, Cosmic acceleration in a dust only universe via energy-momentum powered gravity, Phys. Rev. D 97, 024011 (2018). 1709.02367
dc.relation.references[61] Ö. Akarsu, N. Katirci, S. Kumar, R. C. Nunes, B. Ozturk, S. Sharma, Rastall gravity extension of the standard ΛCDM model: Theoretical features and observational constraints, 2004.04074
dc.relation.references[62] Ö. Akarsu, J.D. Barrow, L.A. Escamilla, J.A. Vazquez, Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant, Phys. Rev. D 101, 063528 (2020). 1912.08751
dc.relation.references[63] L. Visinelli, S. Vagnozzi, U. Danielsson, Revisiting a negative cosmological constant from low-redshift data, Symmetry 11, 1035 (2019). 1907.07953
dc.relation.references[64] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, the MIT Press, (2006). ISBN 0-262-18253-X
dc.relation.references[65] A. Bonilla et al., Measurements of H0 and reconstruction of the dark energy properties from a model-independent joint analysis, Eur. Phys. J. C 81, 2 (2021). 2011.07140
dc.relation.references[66] J.M. Tejeiro., Fundamentos de la Relatividad General, (2004).
dc.relation.references[67] Friedmann, A. (1922). Ueber die Kruemmung des Raumes . Z. Phys., 10:377-386.
dc.relation.references[68] Friedmann, A. (1924). Ueber die Moeglichkeit einer Welt mit konstanter negativer Kruemmung des Raumes. Z. Phys., 21:326–332.
dc.relation.references[69] Robertson, H. P. (1935). Kinematics and World-Structure. Astrophys. J., 82:284.
dc.relation.references[70] Robertson, H. P. (1936). Kinematics and World-Structure III. Astrophys. J., 83:257.
dc.relation.references[71] Walker, A. G. (1937). On milne’s theory of world-structure. Proceedings of the London Mathematical Society, 2(1):90–127.
dc.relation.references[72] Lemaitre, G. (1931). The Expanding Universe. Mon. Not. Roy. Astron. Soc., 91:490–501.
dc.relation.references[73] Lemaitre, G. (1997). The expanding universe. Gen. Rel. Grav., 29:641–680.
dc.relation.references[74] Schutz, B. F. (1985). A First Course In General Relativity. Cambridge, Uk: Univ. Pr.
dc.relation.references[75] Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley- New York.
dc.relation.references[76] Maartens, R. (1996). Causal thermodynamics in relativity.
dc.relation.references[77] Wu, K. K. S., Lahav, O., and Rees, M. J. (1999). The large-scale smoothness of the Universe. Nature, 397:225–230. [,19(1998)].
dc.relation.references[78] Sarkar, S. and Pandey, B. (2016). An information theory based search for homogeneity on the largest accessible scale. Mon. Not. Roy. Astron. Soc., 463(1):L12–L16
dc.relation.references[79] Giblin, J. T., Mertens, J. B., and Starkman, G. D. (2016). Observable Deviations from Homogeneity in an Inhomogeneous Universe. Astrophys. J., 833(2):247.
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectProcesos Gaussianos
dc.subjectEnergía Oscura
dc.subjectParámetros Cosmológicos
dc.subjectSimulación de Datos
dc.subject.ddc510
dc.subject.keywordsGaussian Processes
dc.subject.keywordsDark Energy
dc.subject.keywordsCosmological Parameters
dc.subject.keywordsData Simulation
dc.titleCosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISA
dc.title.translatedΛCDM cosmology in light of the most recent observational evidence, including a Machine Learning analysis and a prediction with simulated LISA data
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
2.99 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
413.77 KB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones