Inteligencia Artificial (IA) empática Tecnología predictiva para el acompañamiento emocional personalizado
| dc.contributor.advisor | González Bríñez, Mario Hernán | |
| dc.contributor.author | Alfonso Acosta, Paula Alejandra | |
| dc.contributor.author | Cabrera Ceballos, Paula Sofia | |
| dc.date.accessioned | 2025-09-02T14:09:26Z | |
| dc.date.available | 2025-09-02T14:09:26Z | |
| dc.date.issued | 2025-06 | |
| dc.description.abstract | El estudio tuvo como objetivo desarrollar y validar un sistema basado en inteligencia artificial para anticipar bajones emocionales y ofrecer apoyo personalizado a los usuarios. Se enfocó en la recopilación y análisis de datos digitales relacionados con el comportamiento diario, señales fisiológicas y reportes subjetivos de estado de ánimo, para construir un modelo predictivo robusto mediante técnicas de aprendizaje automático. La muestra utilizada incluyó participantes con diversidad demográfica para asegurar la generalización del modelo. La metodología combinó análisis estadístico de grandes volúmenes de datos recogidos mediante dispositivos móviles con entrevistas semiestructuradas para evaluar la percepción y efectividad de la herramienta. El modelo consideró variables como calidad del sueño, interacción en redes sociales, patrones de lenguaje en comunicaciones digitales, actividad física y respuestas emocionales diarias, variables que se correlacionaron significativamente con episodios de estrés y tristeza. Los resultados indicaron que el sistema alcanzó una precisión cercana al 85 % en la predicción de episodios emocionales adversos, validando su potencial para una detección temprana eficaz. Asimismo, las intervenciones personalizadas facilitadas por la plataforma lograron reducir la intensidad y duración de los episodios emocionales, mejorando la experiencia del usuario y su bienestar general. Se concluyó que la inteligencia artificial aplicada a la salud emocional puede ser una herramienta innovadora y efectiva para la prevención y manejo de alteraciones emocionales. Este enfoque contribuye a la promoción de bienestar mental al ofrecer intervenciones oportunas y adaptadas, con potencial para integrarse en ámbitos educativos, laborales y clínicos, apoyando así estrategias de salud mental preventiva accesibles y sostenibles. | |
| dc.description.abstractenglish | The study aimed to develop and validate an artificial intelligence-based system to anticipate emotional breakdowns and offer personalized support to users. It focused on the collection and analysis of digital data related to daily behavior, physiological signals, and subjective reports of mood, to build a robust predictive model using machine learning techniques. The sample included demographically diverse participants to ensure the model's generalizability. The methodology combined statistical analysis of large volumes of data collected through mobile devices with semi-structured interviews to evaluate the tool's perception and effectiveness. The model considered variables such as sleep quality, social media interaction, language patterns in digital communications, physical activity, and daily emotional responses, variables that were significantly correlated with episodes of stress and sadness. The results indicated that the system achieved an accuracy of nearly 85% in predicting adverse emotional episodes, validating its potential for effective early detection. Furthermore, the personalized interventions provided by the platform were able to reduce the intensity and duration of emotional episodes, improving the user experience and overall well-being. It was concluded that artificial intelligence applied to emotional health can be an innovative and effective tool for the prevention and management of emotional disorders. This approach contributes to promoting mental well-being by offering timely and tailored interventions, with the potential to be integrated into educational, occupational, and clinical settings, thus supporting accessible and sustainable preventive mental health strategies. | |
| dc.description.degreelevel | Pregrado | spa |
| dc.description.degreename | Profesional en Marketing y Transformación Digital | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | instname:Universidad El Bosque | spa |
| dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
| dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12495/17851 | |
| dc.language.iso | es | |
| dc.publisher.faculty | Facultad de Ciencias Económicas y Administrativas | spa |
| dc.publisher.grantor | Universidad El Bosque | spa |
| dc.publisher.program | Marketing y Transformación Digital | spa |
| dc.relation.references | ACADEMIA NACIONAL DE MEDICINA DE COLOMBIA. (2021). Inteligencia Artificial en Salud. a científica arbitrada de la Academia Nacional de Medicina de Colombia, 43(4), 210. https://anmdecolombia.org.co/wp-content/uploads/2022/01/Revista-Medicina-No.-135-Vol-43-4.pdf | |
| dc.relation.references | Ben-Zeev, D., Brian, R., & Wang, R. (2017, 04 03). CrossCheck: Integrating self-report, behavioral sensing, and smartphone use to identify digital indicators of psychotic relapse. PubMed. Retrieved May 31, 2025, from https://pubmed.ncbi.nlm.nih.gov/28368138/ | |
| dc.relation.references | Calvo, R. A., Milne, D. N., Hussain, M. S., & Christensen, H. (2019). Natural language processing in mental health applications using non-clinical texts. Natural Language Engineering, 25(1), 1–15. https://doi.org/10.1017/S1351324918000418 | |
| dc.relation.references | Chatterjee, M., & Prasad, R. (2021). Emotion detection from text: A review of techniques and applications. Journal of Intelligent & Fuzzy Systems, 40(3), 5301–5312. https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs201393 | |
| dc.relation.references | Creswell, J. (2014, 10 24). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SPADA UNS. Retrieved May 31, 2025, from https://spada.uns.ac.id/pluginfile.php/510378/mod_resource/content/1/creswell.pdf | |
| dc.relation.references | Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., & Quatieri, T. F. (2015). A review of depression and suicide risk assessment using speech analysis. Speech Communication, 71, 10–49. https://doi.org/10.1016/j.specom.2015.03.004 | |
| dc.relation.references | Fagherazzi, G., & Goetzinger, C. (2021, 06 22). Digital Health Strategies to Fight COVID-19 Worldwide: Challenges, Recommendations, and a Call for Papers. JMIR Publications. https://www.jmir.org/2020/6/e19284 | |
| dc.relation.references | Jacobson, N. C., & Chung, Y. J. (2020). Passive sensing of prediction of depression and anxiety using smartphones: A systematic review and meta-analysis. Journal of Affective Disorders, 274, 1044–1055. https://www.sciencedirect.com/science/article/pii/S0165032719335797 | |
| dc.relation.references | Géron, A. (2019, 09 24). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition[Book]. O'Reilly Media. Retrieved May 31, 2025, from https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/ | |
| dc.relation.references | Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 1–21. https://doi.org/10.1177/2053951716679679 | |
| dc.relation.references | Patton, M. Q. (2002, 11 05). Qualitative research & evaluation methods. Google Books. https://books.google.com.co/books?hl=es&lr=&id=FjBw2oi8El4C&oi=fnd&pg=PR21&dq=Patton,+M.+Q.+(2015).+Qualitative+research+%26+evaluation+methods+(4th+ed.).+SAGE+Publications.&ots=byp5hHHFsF&sig=dla-IjvJCLSCBpOePnUxX9CiJmg#v=onepage&q&f=false | |
| dc.relation.references | Plan de recuperación, transformación y resilencia. (2023, 04 19). ¿Qué es la inteligencia artificial o IA? Google Cloud. Retrieved May 31, 2025, from https://cloud.google.com/learn/what-is-artificial-intelligence?hl=es-419 | |
| dc.relation.references | Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347–1358. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6919473/ | |
| dc.relation.references | Schuller, B., & Batlier, A. (2011, 11 02). Recognising Realistic Emotions and Affect in Speech: State of the Art and Lessons Learnt from the First Challenge. ResearchGate. https://www.researchgate.net/publication/222650661_Recognising_realistic_emotions_and_affect_in_speech_State_of_the_art_and_lessons_learnt_from_the_first_challenge | |
| dc.relation.references | Sharma, C. M., & Chariar, V. (2024, 06 30). Diagnosis of mental disorders using machine learning: Literature review and bibliometric mapping from 2012 to 2023. ScienceDiret, 10(12), 89. https://www.sciencedirect.com/science/article/pii/S2405844024085797 | |
| dc.relation.references | Topol, E. (2019, 03 12). How Artificial Intelligence Can Make Healthcare Human Again. Google Books. https://www.google.com.co/books/edition/Deep_Medicine/_EFlDwAAQBAJ?hl=es&gbpv=0 | |
| dc.relation.references | UNESCO. (2021). Recommendation on the Ethics of Artificial Intelligence. https://unesdoc.unesco.org/ark:/48223/pf0000380455 | |
| dc.relation.references | UNICEF. (2023, 08 11). La salud mental en pocas palabras | UNICEF. Unicef. Retrieved May 31, 2025, from https://www.unicef.org/lac/crianza/seguridad-proteccion/salud-mental-pocas-palabras | |
| dc.relation.references | Unión Europea. (2021). Proposal for a Regulation on a European approach for Artificial Intelligence. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 | |
| dc.relation.references | World Health Organization. (2022, March 2). Mental Health and COVID-19: Early evidence of the pandemic's impact. IRIS. Retrieved May 31, 2025, from https://iris.who.int/bitstream/handle/10665/352189/WHO-2019-nCoV-Sci-Brief-Mental-health-2022.1-eng.pdf?sequence=1 | |
| dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
| dc.rights.local | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject | Inteligencia artificial | |
| dc.subject | Salud mental | |
| dc.subject | Aprendizaje automático | |
| dc.subject | Predicción emocional | |
| dc.subject | Bienestar psicológico | |
| dc.subject.ddc | 382 | |
| dc.title | Inteligencia Artificial (IA) empática Tecnología predictiva para el acompañamiento emocional personalizado | |
| dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
| dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
| dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
| dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 507.85 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
Cargando...
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 269.49 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- Anexo 1 carta de aprobacion.pdf
- Tamaño:
- 329.24 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
