Manual para la evaluación y control de la exposición ocupacional a humos metálicos de soldadura
dc.contributor.advisor | Cetina Castillo , Lidy Yadira | |
dc.contributor.advisor | Giraldo Luna , Clara Margarita | |
dc.contributor.author | Barrios Olivera , Jeny Paola | |
dc.contributor.author | Garcia Moreno , Jeimy Stefanny | |
dc.contributor.author | Castiblanco Bermudez , Daniela | |
dc.contributor.orcid | Barrios Olivera;Jeny Paola [0009-0007-8299-9821] | |
dc.contributor.orcid | Garcia Moreno;Jeimy Stefanny [0009-0008-7914-5128] | |
dc.contributor.orcid | Castiblanco Bermudez;Daniela [0009-0000-9633-5670] | |
dc.date.accessioned | 2025-02-12T16:24:24Z | |
dc.date.available | 2025-02-12T16:24:24Z | |
dc.date.issued | 2025-01 | |
dc.description.abstract | Este manual explora en profundidad los riesgos asociados con la exposición a humos metálicos en procesos de soldadura, los cuales contienen partículas y gases que pueden ser tóxicos. El texto ofrece una visión integral de los efectos en la salud ocupacional, detallando cómo la exposición prolongada puede provocar enfermedades pulmonares crónicas, problemas neurológicos e incluso cáncer de pulmón. A través de una revisión sistemática de la literatura actual, se presentan las prácticas más recomendadas para la evaluación y control de la exposición a estos humos en distintos entornos laborales. Además, ellibro identifica vacíos en la investigación actual, proponiendo áreas clave para futuros estudios con el objetivo de mejorar la seguridad en la industria de la soldadura. | |
dc.description.abstractenglish | This manual explores in depth the risks associated with exposure to metal fumes in welding processes, which contain particles and gases that can be toxic. The text offers a comprehensive view of occupational health effects, detailing how prolonged exposure It can cause chronic lung diseases, neurological problems and even lung cancer. Through a systematic review of current literature, the most recommended practices are presented. for the evaluation and control of exposure to these fumes in different work environments. Furthermore, the The book identifies gaps in current research, proposing key areas for future studies to goal of improving safety in the welding industry. | |
dc.description.degreelevel | Especialización | spa |
dc.description.degreename | Especialista en Higiene Industrial | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13937 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Especialización en Higiene Industrial | spa |
dc.relation.references | 1. IARC. Agentes clasificados por las monografías de la IARC . volúmenes 1 a 135. 2023 Dec 1; | |
dc.relation.references | 2. Orden L. Ministerio de la Protección Social Cáncer de Pulmón. | |
dc.relation.references | 3. Grahn K, Gustavsson P, Andersson T, Lindén A, Hemmingsson T, Selander J, et al. Occupational exposure to particles and increased risk of developing chronic obstructive pulmonary disease (COPD): A population-based cohort study in Stockholm, Sweden. Environ Res. 2021 Sep 1;200:111739. | |
dc.relation.references | 4. Dewald E, Gube M, Baumann R, Bertram J, Kossack V, Lenz K, et al. Assessment of the Biological Effects of Welding Fumes Emitted From Metal Active Gas and Manual Metal ArcWelding in Humans. Pubmed [Internet]. 2015 Sep 1 [cited 2024 Sep 28];57(8):845–50. Available from: https://pubmed.ncbi.nlm.nih.gov/26247637/ | |
dc.relation.references | 5. K. KrajnakEngineering Controls and Technology Branch NI for OS and HMWUC ksk1@cdc. gov, KSCJJRRRMGRM. Effects of pulmonary exposure to chemically-distinct welding fumes on neuroendocrine markers of toxicity. Taylor&Francis. 2017;80:301–14. | |
dc.relation.references | 6. Krabbe J, Hansen C, Otte N, Kraus T. Short-term exposure to zinc- and copper-containing welding fumes: Effects on pulmonary function in humans. scienceDirect. 2023 Jul 1;78:127169. | |
dc.relation.references | 7. Stanislawska M, Janasik B, Kuras R, Malachowska B, Halatek T, Wasowicz W. Assessment of occupational exposure to stainless steel welding fumes – A human biomonitoring study. scienceDirect. 2020 Sep 1;329:47–55. | |
dc.relation.references | 8. Rodrigo Marín Bernal. Ministerio de Trabajo y Seguridad Social. 1979. Resolución 2400 de 1979 | |
dc.relation.references | 9. Luis Eduardo Garzón. Decreto 1072 de 2015. Ministerio del Trabajo. 2015 May 26; | |
dc.relation.references | 10. Alicia Victoria Arango Olmos. Resolución 0312 de 2019. Ministerio del Trabajo [Internet]. 2019 [cited 2024 Jun 17]; Available from: https://www.mintrabajo.gov.co/documents/20147/59995826/Resolucion+0312-2019- +Estandares+minimos+del+Sistema+de+la+Seguridad+y+Salud.pdf | |
dc.relation.references | 11. Yepes-Nuñez JJ, Urrútia G, Romero-García M, Alonso-Fernández S. Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Rev Esp Cardiol. 2021 Sep 1;74(9):790–9. | |
dc.relation.references | 12. IARC. Soldadura, trióxido de molibdeno y óxido de indio y estaño. Monografías de la IARC Volumen 118. 2018 Jul 30; | |
dc.relation.references | 13. CDC - Instituto Nacional para la Seguridad y Salud Ocupacional (NIOSH) [Internet]. [cited 2024 Nov 2]. Available from: https://www.cdc.gov/spanish/niosh/index.html | |
dc.relation.references | 14. Inicio | Administración de Seguridad y Salud Ocupacional [Internet]. [cited 2024 Nov 2]. Available from: https://www.osha.gov/ | |
dc.relation.references | 15. ACGIH. OPERATIONS MANUAL THRESHOLD LIMIT VALUES (TLV ® ) FOR CHEMICAL SUBSTANCES COMMITTEE LAST REVISED: 07-NOV-2020 Defining the Science of Occupational and Environmental Health ®. | |
dc.relation.references | 16. Szűcs-Somlyó É, Lehel J, Májlinger K, Lőrincz M, Kővágó C. Metal-oxide inhalation induced fever - Immuntoxicological aspects of welding fumes. Food and Chemical Toxicology. 2023 May 1;175:113722 | |
dc.relation.references | 17. Rahmani A, Golbabaei F, Dehghan SF, Mazlomi A, Akbarzadeh A. Assessment of the effect of welding fumes on welders’ cognitive failure and health-related quality of life. Int J Occup Saf Ergon [Internet]. 2016 Jul 2 [cited 2024 Sep 28];22(3):426–32. Available from: https://pubmed.ncbi.nlm.nih.gov/27093360/ | |
dc.relation.references | 18. Ogochukwu Kelechi Onyeso · Arinze Kingsley Ugwu· Henrietha Chibuzor Adandom ·Suha Damag · Kelechi Mirabel Onyeso · James Okechukwu Abugu · Okwukweka Emmanuela Aruma. Impacto de la ocupación de soldador en el nivel sérico de aluminio y su asociación con la salud física, la función cognitiva y la calidad de vida: un estudio transversal. Web of science. 2023 Dec 18;97(Humos metalicos):113–44. | |
dc.relation.references | 19. Guía completa: Conoce los diferentes tipos de soldadura y sus aplicaciones - Biblioteca Escolar [Internet]. [cited 2024 Nov 6]. Available from: https://bibliotecaescolardigital.es/tipos-desoldadura/ | |
dc.relation.references | 20. Rafiee A, Ospina MB, Pitt TM, Quémerais B. Oxidative stress and DNA damage resulting from welding fumes exposure among professional welders: A systematic review and meta-analysis. Environ Res. 2022 Nov 1;214:114152. | |
dc.relation.references | 21. Vaquero C, Gutierrez-Cañas C, Galarza N, López de Ipiña JL. Exposure assessment to engineered nanoparticles handled in industrial workplaces: The case of alloying nano-TiO2 in new steel formulations. scienceDirect. 2016 Dec 1;102:1–15. | |
dc.relation.references | 22. Acero Zapla. Funciones del soldador industrial: todo lo que debes saber. [cited 2024 Oct 14]; Available from: https://aceroszapla.com.ar/que-hace-un-soldador-industrial | |
dc.relation.references | 23. Exposición a humos metálicos en soldadura manual TIG. BASEQUIM [Internet]. [cited 2024 Oct14]. Available from: https://www.insst.es/stp/basequim/011-soldadura-manual-tig-de-acerosinoxidables-y-de-alta-aleacion-con-cromo-o-niquel-exposicion-a-humos-metalicos-2013 | |
dc.relation.references | 24. Bases de datos: EBSCOhost [Internet]. [cited 2024 Nov 16]. Available from: https://web-pebscohost-com.ezproxy.unbosque.edu.co/ehost/search/selectdb?vid=0&sid=99ef3e45-ebe6-4b31-acf1-4a21facff02d%40redis | |
dc.relation.references | 25. Mehrifar Y, Zamanian Z, Pirami H. Respiratory Exposure to Toxic Gases and Metal Fumes Produced by Welding Processes and Pulmonary Function Tests. Int J Occup Environ Med [Internet]. 2019 Jan 1 [cited 2024 Nov 16];10(1):40–9. Available from: https://pubmed.ncbi.nlm.nih.gov/30685776/ | |
dc.relation.references | 26. Mondal AK, Kumar B, Bag S, Nirsanametla Y, Biswas P. Development of avocado shape heat source model for finite element based heat transfer analysis of high-velocity arc welding process. International Journal of Thermal Sciences. 2021 Aug 1;166:107005. | |
dc.relation.references | 27. Khatib H. Numerical analysis of the residual stress state and distortions generated by autogenous welding and shielded metal arc welding (SMAW). Mater Today Proc. 2023 Aug 9; | |
dc.relation.references | 28. Baghel PK. Effect of SMAW process parameters on similar and dissimilar metal welds: An overview. Heliyon. 2022 Dec 1;8(12):e12161. | |
dc.relation.references | 29. Hariprasath P, Sivaraj P, Balasubramanian V, Pilli S, Sridhar K. Effect of the welding technique on mechanical properties and metallurgical characteristics of the naval grade high strength low alloy steel joints produced by SMAW and GMAW. CIRP J Manuf Sci Technol. 2022 May1;37:584–95. | |
dc.relation.references | 30. Zemlik M, Konat Ł, Białobrzeska B. Analysis of the possibilities to increase abrasion resistance of welded joints of Hardox Extreme steel. Tribol Int. 2025 Jan 1;201:110271. | |
dc.relation.references | 31. Gyuri Kim 1 Ho-Sun Lee, 1 Joon Seok Bang, 2 Boram Kim, 1 DahaeKo, 1 and Mihi Yang. A Current Review for BiologicalMonitoring of Manganesewith Exposure, Susceptibility,and Response Biomarkers. Taylor & Francis. 2015;33:229–54. | |
dc.relation.references | 32. Sailabaht A, Wang F, Cherrie JW. Calibration of the Welding Advanced REACH Tool (weldART).Int J Hyg Environ Health. 2020 Jun 1;227:113519. | |
dc.relation.references | 33. Brand P, Ebert B, Esser A, Sharma R. Direct Exposure of Welders to Welding Fumes and Effect of Fume Extraction Systems Under Controlled Conditions. J Occup Environ Med [Internet]. 2021 Jun 1 [cited 2024 Nov 4];63(6):490–502. Available from: https://journals.lww.com/joem/fulltext/2021/06000/direct_exposure_of_welders_to_welding_fu mes_and.7.aspx | |
dc.relation.references | 34. Zhang M, Han S, Xuan ZY, Fang X, Liu X, Zhang W, et al. Study of Microwave-Induced Ag Nanowire Welding for Soft Electrode Conductivity Enhancement. Micromachines (Basel) [Internet]. 2021 Jun 1 [cited 2024 Nov 4];12(6). Available from: https://pubmed.ncbi.nlm.nih.gov/34071895/ | |
dc.relation.references | 35. Stankiewicz K, Lipkowski A, Kowalczyk P, Giżyński M, Waśniewski B. Resistance Welding of Thermoplastic Composites, Including Welding to Thermosets and Metals: A Review. Materials (Basel) [Internet]. 2024 Oct 1 [cited 2024 Nov 16];17(19). Available from: https://pubmed.ncbi.nlm.nih.gov/39410368/ | |
dc.relation.references | 36. Wang M, Zhang Z, Li J, Zhang C, Li Y, Li C. Microstructure and mechanical properties analysis of S30408 joints by PAW+GTAW hybrid welding. Mater Chem Phys. 2023 Oct 1;307:128076. | |
dc.relation.references | 37. Zhou C, Ren Y, Yokogawa K, Xue J, Li X. Effect of pre-strain on hydrogen induced cracking of PAW welded 304 austenitic stainless steel. Int J Hydrogen Energy. 2024 Feb 7;54:713–28. | |
dc.relation.references | 38. Li Y, Ma C, Ma L, Liu Y, Zhao Y, Wang J, et al. Unraveling microstructure characteristics induced mechanical responses in laser welding of titanium alloy subjected to varied inclination angle. Opt Laser Technol [Internet]. 2025 Apr 1 [cited 2024 Nov 12];182:112091. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0030399224015494 | |
dc.relation.references | 39. Teti BS, Amorim ALM, Costa EC, Lima NB, Alves KGB, Lima NBD. Incorporating industrial residue of submerged arc welding (SAW) in cement-based mortar matrices as a green strategy. Next Sustainability [Internet]. 2025 Jan 1 [cited 2024 Nov 12];5:100080. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2949823624000576 | |
dc.relation.references | 40. Wang J, Li L, Xu P. Visual Sensing and Depth Perception for Welding Robots and Their Industrial Applications. Sensors (Basel) [Internet]. 2023 Dec 1 [cited 2024 Nov 16];23(24). Available from: https://pubmed.ncbi.nlm.nih.gov/38139548/ | |
dc.relation.references | 41. Zsuzsanna M en mia EH atleta a, A como PKK acs b T de E aczb, D aniel nesztorb, T como S o b, AS oa y EP. Neurotoxic effects of subchronic intratracheal Mn nanoparticle exposure alone and in combination with other welding fume metals in rats. Taylor & Francis. 2017;29. | |
dc.relation.references | 42. Krabbe J, Hansen C, Otte N, Kraus T. Short-term exposure to zinc- and copper-containing welding fumes: Effects on pulmonary function in humans. Journal of Trace Elements in Medicine and Biology. 2023 Jul 1;78:127169. | |
dc.relation.references | 43. ACGIH (GLOBAL PROTECTING WORKER HEATH. Introducción a los TLV de Sustancias Químicas. | |
dc.relation.references | 44. Krabbe J, Hansen C, Otte N, Kraus T. Short-term exposure to zinc- and copper-containing welding fumes: Effects on pulmonary function in humans. Journal of Trace Elements in Medicine and Biology. 2023 Jul 1;78:127169. | |
dc.relation.references | 45. Kate T Ten, Collins MJ. A survey of symptoms and eye safety practices among welders. Clin Exp Optom. 1990;73(3):79–85. | |
dc.relation.references | 46. R. Baumanna PBACAMIR a, SD a, SJ a, BG c, TK and MG. Human nasal mucosal C-reactive protein responses after inhalation ofultrafine welding fume particles: positive correlation to systemic C-reactiveprotein responses. Taylor & Francis. 2018;12:1130–47. | |
dc.relation.references | 47. Riccelli MG, Goldoni M, Poli D, Mozzoni P, Cavallo D, Corradi M. Welding fumes, a risk factor for lung diseases. Vol. 17, International Journal of Environmental Research and Public Health. MDPI AG; 2020. | |
dc.relation.references | 48. K. Krajnak a KS b, CJ a, JRR c, RMGRM a, OW e, and JMA. Effects of pulmonary exposure to chemically-distinct welding fumes onneuroendocrine markers of toxicity. Taylor & Francis. 2018;80:301–14. | |
dc.relation.references | 49. Dana Loomis a b, 1, AMD c, d, 1, *, NCM e, NCAD g, h, NG i, SKK j, AM k, RLM l, SA m, MSMS n, SZ o, FP e, *. The effect of occupational exposure to welding fumes on trachea, bronchus and lung cancer: A systematic review and meta-analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury. Pubmed. 2022;1–56. | |
dc.relation.references | 50. Maori Konoa b, NITNYNMKTOMHCKCFAV j, MT and YI. Enhancement of keratinocyte survival and migration elicited by interleukin 24upregulation in dermal microvascular endothelium upon welding-fumeexposure. Taylor & Francis. 2024;782–810. | |
dc.relation.references | 51. Zhang M, Han S, Xuan ZY, Fang X, Liu X, Zhang W, et al. Study of Microwave-Induced Ag Nanowire Welding for Soft Electrode Conductivity Enhancement. Micromachines (Basel) [Internet]. 2021 Jun 1 [cited 2024 Nov 4];12(6). Available from: https://pubmed.ncbi.nlm.nih.gov/34071895/ | |
dc.relation.references | 52. Assefa S, Köhler G. Intestinal Microbiome and Metal Toxicity. Curr Opin Toxicol [Internet]. 2020 Feb 1 [cited 2024 Nov 24];19:21–7. Available from: https://pubmed.ncbi.nlm.nih.gov/32864518/ | |
dc.relation.references | 53. Assefa S, Köhler G. Intestinal microbiome and metal toxicity. Curr Opin Toxicol. 2020 Feb 1;19:21–7. | |
dc.relation.references | 54. Lu TY, Wu C Da, Huang YT, Chen YC, Chen CJ, Yang HI, et al. Exposure to PM2.5 Metal Constituents and Liver Cancer Risk in REVEAL-HBV. J Epidemiol [Internet]. 2024 [cited 2024 Nov 24];34(2):87–93. Available from: https://pubmed.ncbi.nlm.nih.gov/36908115/ | |
dc.relation.references | 55. Lu TY, Wu C Da, Huang YT, Chen YC, Chen CJ, Yang HI, et al. Exposure to PM2.5 Metal Constituents and Liver Cancer Risk in REVEAL-HBV. J Epidemiol [Internet]. 2024 [cited 2024 Nov 24];34(2):87–93. Available from: https://pubmed.ncbi.nlm.nih.gov/36908115/ | |
dc.relation.references | 56. Lu TY, Wu C Da, Huang YT, Chen YC, Chen CJ, Yang HI, et al. Exposure to PM2.5 Metal Constituents and Liver Cancer Risk in REVEAL-HBV. J Epidemiol [Internet]. 2024 [cited 2024 Nov 24];34(2):87–93. Available from: https://pubmed.ncbi.nlm.nih.gov/36908115/ | |
dc.relation.references | 57. Ali-El-Dein B, Abdelgawad M, Tarek M, Abdel-Rahim M, Elkady ME, Saleh HH, et al. Bladder cancer associated with elevated heavy metals: Investigation of probable carcinogenic pathways through mitochondrial dysfunction, oxidative stress and mitogen-activated protein kinase. Urol Oncol [Internet]. 2024 [cited 2024 Nov 24]; Available from: https://pubmed.ncbi.nlm.nih.gov/39379209/ | |
dc.relation.references | 58. Letaiová S, Medveová A, Ovíková A, Duinská M, Volkovová K, Mosoiu C, et al. Bladder cancer, a review of the environmental risk factors. Environ Health. 2012;11(SUPPL.1). | |
dc.relation.references | 59. Joko-Fru WY, Bardot A, Bukirwa P, Amidou S, N’da G, Woldetsadik E, et al. Cancer survival in sub-Saharan Africa (SURVCAN-3): a population-based study. Lancet Glob Health [Internet]. 2024 Jun 1 [cited 2024 Nov 25];12(6):e947–59. Available from: https://gco.iarc.fr/ | |
dc.relation.references | 60. Dehghan SF, Mehrifar Y, Ardalan A. The Relationship between Exposure to Lead-Containing Welding Fumes and the Levels of Reproductive Hormones. Ann Glob Health [Internet]. 2019 [cited 2024 Nov 16];85(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31673512/ | |
dc.relation.references | 61. Organización Mundial de la Salud. OMS. 2021. Un compendio de 500 acciones de la OMS y los asociados de las Naciones Unidas tiene como objetivo reducir las enfermedades provocadas por factores ambientales y salvar vidas. | |
dc.relation.references | 62.Organización Mundial de la Salud. 2021. 2021. Intoxicación por plomo y salud. | |
dc.relation.references | 63.Mamtani R, Stern P, Dawood I, Cheema S. Metals and disease: A global primary health care perspective. Vol. 2011, Journal of Toxicology. 2011. | |
dc.relation.references | 64.Programa de evaluación de la exposición | Programas de investigación | CDC [Internet]. [cited 2024 Nov 18]. Available from: https://www.cdc.gov/niosh/research-programs/portfolio/exposureassess.html | |
dc.relation.references | 65.Andrews R, Fey O’connor P. NIOSH Manual of Analytical Methods (NMAM), Fifth Edtion [Internet]. 2020. Available from: www.cdc.gov/niosh/nmam | |
dc.relation.references | 66. Leidel NA, Busch KA, Lynch J. Occupational exposure sampling strategy manual [Internet]. 1977 [cited 2024 Nov 23]. Available from: https://stacks.cdc.gov/view/cdc/11158 | |
dc.relation.references | 67. Rodrigo Marín Bernal. Ministerio de Trabajo y Seguridad Social. 1979. Resolución 2400 de 1979 | |
dc.relation.references | 68. Ley 9 de 1979 Congreso de la República de Colombia [Internet]. [cited 2024 Nov 18]. Available from: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=1177 | |
dc.relation.references | 69. Alejandro Gaviria Uribe JNRMuñoz. Decreto 1477 de 2014 [Internet]. Ministerio del Trabajo 2014. Available from: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=58849 | |
dc.relation.references | 70. Luis Eduardo Garzón. Decreto 1072 de 2015. Ministerio del Trabajo. 2015 May 26; | |
dc.relation.references | 71. Alicia Victoria Arango Olmos. Resolución 0312 de 2019. Ministerio del Trabajo [Internet]. 2019 [cited 2024 Jun 17]; Available from: https://www.mintrabajo.gov.co/documents/20147/59995826/Resolucion+0312-2019-+Estandares+minimos+del+Sistema+de+la+Seguridad+y+Salud.pdf | |
dc.relation.references | 72. De Colombia R. Ministerio de la Protección Social para Asma Ocupacional (GATISO-ASMA) SUBCENTRO DE SEGURIDAD SOCIAL Y RIESGOS PROFESIONALES VICERECTORIA ACADÉMICA-EDUCACIÓN CONTINUA. | |
dc.relation.references | 73. Leidel NA, Busch KA, Lynch J. Occupational exposure sampling strategy manual [Internet]. 1977[cited 2024 Nov 23]. Available from: https://stacks.cdc.gov/view/cdc/11158 | |
dc.relation.references | 74. NIOSH. Metodo NIOSH 7302. 2024. | |
dc.relation.references | 75. AIHA A Strategy for assessing and managing occupational exposures (1) - Adobe cloud storage [Internet]. [cited 2024 Nov 19]. Available from: https://acrobat.adobe.com/id/urn:aaid:sc:VA6C2:188fb550-e221-4bd9-82fa2959fc5aae00?viewer%21megaVerb=group-discover | |
dc.relation.references | 76. Martí Veciana A. NTP 582: Gestión de los equipos de medición en un laboratorio de higiene industrial. | |
dc.relation.references | 77. Programas PAT de AIHA | Pruebas analíticas de competencia en higiene industrial… [Internet]. [cited 2024 Nov 25]. Available from: https://www.aihapat.org/programs/industrial-hygieneproficiency-analytical-testing-ihpat-program | |
dc.relation.references | 78. ACGIH (GLOBAL PROTECTING WORKER HEATH. Introducción a los TLV de Sustancias Químicas. 2024; | |
dc.relation.references | 79. Exposición a humos metálicos en soldadura manual al arco. BASEQUIM [Internet]. [cited 2024 Nov 26]. Available from: https://www.insst.es/stp/basequim/007-soldadura-al-arco-electrico-conelectrodo-metalico-revestido-exposicion-a-humos-metalicos-2012 | |
dc.relation.references | 80. J. F. Gomes a b, RMMJPO c, HME b and PCA. Evaluation of the amount of nanoparticles emitted in LASER additivemanufacture/welding. Taylor & Francis [Internet]. 2019 [cited 2024 Sep 28];31:125–30. Available from: https://doiorg.ezproxy.unbosque.edu.co/10.1080/08958378.2019.1621965 | |
dc.relation.references | 81. Li Y, Ma C, Ma L, Liu Y, Zhao Y, Wang J, et al. Unraveling microstructure characteristics induced mechanical responses in laser welding of titanium alloy subjected to varied inclination angle. Opt Laser Technol [Internet]. 2025 Apr 1 [cited 2024 Nov 12];182:112091. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0030399224015494 | |
dc.relation.references | 82. Orden L. Ministerio de la Protección Social Cáncer de Pulmón. | |
dc.relation.references | 83. IARC. IARC. 2024. IARC ( International Agency for Research on Cancer). | |
dc.relation.references | 84. resolucion-2467-de-2022. | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Intoxicacion cronica por metales pesados | |
dc.subject | Exposicion ocupacional | |
dc.subject | Evaluacion de riesgo | |
dc.subject | Humos de soldadura | |
dc.subject.keywords | Chronic heavy metal poisoning | |
dc.subject.keywords | Occupational exposure | |
dc.subject.keywords | Risk assessment | |
dc.subject.keywords | welding fumes | |
dc.subject.nlm | WA450 | |
dc.title | Manual para la evaluación y control de la exposición ocupacional a humos metálicos de soldadura | |
dc.title.translated | Manual for the evaluation and control of occupational exposure to metallic welding fumes | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Especialización | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado .pdf
- Tamaño:
- 1.69 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 4 de 4
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 470.51 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Acta de aprobacion.pdf
- Tamaño:
- 209.11 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 2.pdf
- Tamaño:
- 219.84 KB
- Formato:
- Adobe Portable Document Format
- Descripción: