Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN

dc.contributor.advisorGuillem Gloria, Pedro Manuel
dc.contributor.advisorCorredor Rozo, Zayda Lorena
dc.contributor.authorRuiz Castellanos, Julian Santiago
dc.date.accessioned2024-11-30T06:43:02Z
dc.date.available2024-11-30T06:43:02Z
dc.date.issued2024-11
dc.description.abstractLa proteína YlbF, que forma parte de la familia de proteínas con dominio com_ylbF estudiadas principalmente en Bacillus subtilis, está involucrada en la regulación de la formación de biofilm, competencia y esporulación. Dado que este dominio es conservado, se postula que proteínas homólogas en otras bacterias Gram positivas podrían cumplir funciones similares. En Staphylococcus aureus, un microorganismo oportunista que causa infecciones intrahospitalarias en pacientes de alto riesgo se sospecha que YlbF está relacionada con la regulación de factores de virulencia, especialmente a nivel transcripcional, como sugiere la presencia de un dominio putativo de unión a ácidos nucleicos y estudios en mutantes nulos. En este proyecto de grado elaboró un protocolo bioinformático centrado en el desarrollo de un pipeline para obtener parámetros y llevar a cabo una dinámica molecular de la proteína YlbF de S. aureus en complejo con ARN, con el objetivo de evaluar posibles sitios de interacción (hotspots) en términos de energías, distancias y empaquetamiento hidrofóbico y su validación mediante metodologías in silico de análisis termodinámico. El flujo de trabajo incluyó la preparación de datos biológicos, obtención de estructuras proteicas y de ARN, definición de parámetros de simulación, construcción de los sistemas a simular, así como la ejecución de la dinámica molecular, su análisis y validación al realizar sustituciones clave por alanina para evaluar los cambios en las interacciones llevando a cabo un análisis comparativo de energías por aminoácido el fin de identificar aquellos residuos que presentan las energías más favorables entre las variantes mutantes y no mutantes. Hecho esto, se observó la participación de diferentes aminoácidos durante la simulación, destacando Arg193, Lys194, Arg207 y Arg209. Estos residuos mostraron una fuerte interacción con el ARN, lo que sugiere una unión potencialmente estable. La naturaleza de esta interacción parece estar relacionada con la carga positiva de estos aminoácidos, que facilita su unión a los grupos fosfato de la cadena de ARN.
dc.description.abstractenglishThe YlbF protein, part of the com_ylbF domain family studied mainly in Bacillus subtilis, is involved in the regulation of biofilm formation, competence, and sporulation. Given the conserved nature of this domain, it is hypothesized that homologous proteins in other Gram-positive bacteria might perform similar functions. In Staphylococcus aureus, an opportunistic microorganism responsible for nosocomial infections in high-risk patients, YlbF is suspected to be linked to the regulation of virulence factors, particularly at the transcriptional level, as indicated by the presence of a putative nucleic acid-binding domain and studies in null mutants. In this degree project, a bioinformatics protocol was developed, focusing on creating a pipeline to obtain parameters and conduct molecular dynamics simulations of the S. aureus YlbF protein in complex with RNA. The goal was to evaluate potential interaction sites (hotspots) in terms of energies, distances, and hydrophobic packing, and validate these through in silico thermodynamic analysis methodologies. The workflow included preparing biological data, obtaining protein and RNA structures, defining simulation parameters, constructing the systems to be simulated, executing molecular dynamics, analyzing the results, and validating key substitutions with alanine to assess changes in interactions. This included a comparative analysis of energies per amino acid to identify residues showing the most favorable energies between mutant and non-mutant variants. As a result, different amino acids were highlighted during the simulation, with Arg193, Lys194, Arg207, and Arg209 showing strong interactions with RNA, suggesting a potentially stable binding. This interaction is likely related to the positive charge of these amino acids, which facilitates their binding to the phosphate groups of the RNA chain.
dc.description.degreelevelPregradospa
dc.description.degreenameBioingenierospa
dc.description.sponsorshipLaboratorio de genética molecular bacteriana
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlhttps://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/13493
dc.language.isoes
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programBioingenieríaspa
dc.relation.referencesAbellan Blázquez, A. (2016). Bacteriemias por Staphylococcus Aureus en el Hospital Clinico Universitario Virgen de la Arrixaca. Estudio Epidemiológico, Clínico y Molecular. Universidad de Murcia.
dc.relation.referencesAbeywansha, T., Huang, W., Ye, X., Nawrocki, A., Lan, X., Jankowsky, E., Taylor, D. J., & Zhang, Y. (2023). The structural basis of tRNA recognition by arginyl-tRNA-protein transferase. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-38004-8
dc.relation.referencesAbraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001
dc.relation.referencesAchar, A., & Sætrom, P. (2015). RNA motif discovery: A computational overview. In Biology Direct (Vol. 10, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13062-015-0090-5
dc.relation.referencesAdusei-Danso, F., Khaja, F. T., Desantis, M., Jeffrey, P. D., Dubnau, E., Demeler, B., Neiditch, M. B., & Dubnau, D. (2019). Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing. https://doi.org/10.1128/mBio
dc.relation.referencesAguilar-Salazar, A., Martínez-Vázquez, A. V., Aguilera-Arreola, G., de Jesus de Luna-Santillana, E., Cruz-Hernández, M. A., Escobedo-Bonilla, C. M., Lara-Ramírez, E., Sánchez-Sánchez, M., Guerrero, A., Rivera, G., & Bocanegra-Garcia, V. (2023). Prevalence of ESKAPE Bacteria in Surface Water and Wastewater Sources: Multidrug Resistance and Molecular Characterization, an Updated Review. In Water (Switzerland) (Vol. 15, Issue 18). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/w15183200
dc.relation.referencesAlipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8), 831–838. https://doi.org/10.1038/NBT.3300
dc.relation.referencesArcher, N. K., Mazaitis, M. J., William Costerton, J., Leid, J. G., Powers, M. E., & Shirtliff, M. E. (2011). Staphylococcus aureus biofilms. Https://Doi.Org/10.4161/Viru.2.5.17724, 2(5), 445–459. https://doi.org/10.4161/VIRU.2.5.17724
dc.relation.referencesAtkins, P., & de Paula, J. (2010). Physical Chemistry.
dc.relation.referencesAytenfisu, A. H., Spasic, A., Grossfield, A., Stern, H. A., & Mathews, D. H. (2017). Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics. Journal of Chemical Theory and Computation, 13(2), 900–915. https://doi.org/10.1021/ACS.JCTC.6B00870/SUPPL_FILE/CT6B00870_SI_002.ZIP
dc.relation.referencesBailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME Suite: Tools for motif discovery and searching. Nucleic Acids Research, 37(SUPPL. 2). https://doi.org/10.1093/nar/gkp335
dc.relation.referencesBalasubramanian, D., Harper, L., Shopsin, B., & Torres, V. J. (2017). Staphylococcus aureus pathogenesis in diverse host environments. Pathogens and Disease, 75(1), 5. https://doi.org/10.1093/FEMSPD/FTX005
dc.relation.referencesBarbieri, I., & Kouzarides, T. (2020). Role of RNA modifications in cancer. Nature Reviews Cancer 2020 20:6, 20(6), 303–322. https://doi.org/10.1038/s41568-020-0253-2
dc.relation.referencesBecker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27(4), 870–926. https://doi.org/10.1128/CMR.00109-13
dc.relation.referencesBerman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/NAR/28.1.235
dc.relation.referencesBeššeová, I., Banáš, P., Kührová, P., Košinová, P., Otyepka, M., & Šponer, J. (2012). Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration. Journal of Physical Chemistry B, 116(33), 9899–9916. https://doi.org/10.1021/jp3014817
dc.relation.referencesBheemireddy, S., Sandhya, S., Srinivasan, N., & Sowdhamini, R. (2022). Computational tools to study RNA-protein complexes. Frontiers in Molecular Biosciences, 9. https://doi.org/10.3389/FMOLB.2022.954926/FULL
dc.relation.referencesBordin, N., Sillitoe, I., Lees, J. G., & Orengo, C. (2021). Tracing Evolution Through Protein Structures: Nature Captured in a Few Thousand Folds. Frontiers in Molecular Biosciences, 8, 668184. https://doi.org/10.3389/FMOLB.2021.668184/BIBTEX
dc.relation.referencesBorukhov, S., Lee, J., & Laptenko, O. (2005). Bacterial transcription elongation factors: New insights into molecular mechanism of action. In Molecular Microbiology (Vol. 55, Issue 5, pp. 1315–1324). https://doi.org/10.1111/j.1365-2958.2004.04481.x
dc.relation.referencesBosko, J. T., Todd, B. D., & Sadus, R. J. (2005). Molecular simulation of dendrimers and their mixtures under shear: Comparison of isothermal-isobaric (NpT) and isothermal-isochoric (NVT) ensemble systems. Journal of Chemical Physics, 123(3). https://doi.org/10.1063/1.1946749
dc.relation.referencesBranda, S. S., González-Pastor, J. E., Dervyn, E., Ehrlich, S. D., Losick, R., & Kolter, R. (2004). Genes involved in formation of structured multicellular communities by Bacillus subtilis. Journal of Bacteriology, 186(12), 3970–3979. https://doi.org/10.1128/JB.186.12.3970-3979.2004
dc.relation.referencesBrantl, S., & Ul Haq, I. (2023). Small proteins in Gram-positive bacteria. In FEMS Microbiology Reviews (Vol. 47, Issue 6). Oxford University Press. https://doi.org/10.1093/femsre/fuad064
dc.relation.referencesBrooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/JCC.21287
dc.relation.referencesCarabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular Microbiology, 88(2), 283–300. https://doi.org/10.1111/MMI.12186
dc.relation.referencesCarver, T. J., Rutherford, K. M., Berriman, M., Rajandream, M.-A., Barrell, B. G., & Parkhill, J. (2005). ACT: the Artemis comparison tool. Bioinformatics, 21(16), 3422–3423. https://doi.org/10.1093/BIOINFORMATICS/BTI553
dc.relation.referencesCase, D. A., Darden Thomas Cheatham III Carlos Simmerling Junmei Wang, T. E., Duke, R. E., Crowley Ross Walker Wei Zhang Kenneth Merz Bing Wang Seth Hayik Adrian Roitberg Gustavo Seabra István Kolossváry Budapest, M. M., Shaw Kim Wong, D. F., Paesani, F., Vanicek Xiongwu Wu Scott Brozell Thomas Steinbrecher Holger Gohlke Lijiang Yang Chunhu Tan John Mongan Viktor Hornak Guanglei Cui David H Mathews Matthew G Seetin Celeste Sagui Volodymyr Babin Peter A Kollman, J. R., Pearlman Robert V Stanton Jed Pitera Irina Massova Ailan Cheng James J Vincent Paul Beroza Vickie Tsui Christian Schafmeister Wilson S Ross Randall Radmer George L Seibel James W Caldwell U Chandra Singh Paul Weiner, D. A., & Cieplak Yong Duan Rob Woods Karl Kirschner Sarah Tschampel Alexey Onufriev Christopher Bayly Wendy Cornell Scott Weiner Austin Yongye Matthew Tessier, P. M. (2008). Amber 10 Users’ Manual Principal contributors to the current codes: Additional key contributors to earlier versions: Additional key people involved in force field development. http://amber.scripps.edu/contributors.html.
dc.relation.referencesCase Thomas E Cheatham, D. A. (2023). Amber 2023 Reference Manual Principal contributors to the current codes. https://ambermd.org/contributors.html
dc.relation.referencesCenters for Disease Control and Prevention. (2019). Staphylococcus aureus in Healthcare Settings | HAI | CDC. https://www.cdc.gov/hai/organisms/staph.html
dc.relation.referencesCervantes-García, E., García-González, R., & María Salazar-Schettino, P. (2014). Características generales del Staphylococcus aureus. Rev Latinoam Patol Clin Med Lab, 61(1), 28–40. www.medigraphic.com/patologiaclinicawww.medigraphic.org.mx
dc.relation.referencesChambers, H. F. (2001). The changing epidemiology of Staphylococcus aureus? Emerging Infectious Diseases, 7(2), 178. https://doi.org/10.3201/EID0702.010204
dc.relation.referencesChakrabarti, P., & Pal, D. (2001). The interrelationships of side-chain and main-chain conformations in proteins. In Progress in Biophysics & Molecular Biology (Vol. 76).
dc.relation.referencesChen, A., Zhao, N., & Hou, Z. (2017). The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study. Soft Matter, 13(45), 8625–8635. https://doi.org/10.1039/C7SM01854A
dc.relation.referencesChen, C. P., Hwang, R. L., Chang, S. Y., & Lu, Y. T. (2011). Effects of temperature steps on human skin physiology and thermal sensation response. Building and Environment, 46(11), 2387–2397. https://doi.org/10.1016/j.buildenv.2011.05.021
dc.relation.referencesChen, D., Wang, Z., Guo, D., Orekhov, V., & Qu, X. (2020). Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy. In Chemistry - A European Journal (Vol. 26, Issue 46, pp. 10391–10401). Wiley-VCH Verlag. https://doi.org/10.1002/chem.202000246
dc.relation.referencesChmielowiec-Korzeniowska, A., Tymczyna, L., Wlazło, Ł., Nowakowicz-Dębek, B., & Trawińska, B. (2020). Staphylococcus aureus carriage state in healthy adult population and phenotypic and genotypic properties of isolated strains. Postepy Dermatologii i Alergologii, 37(2), 184–189. https://doi.org/10.5114/ada.2020.94837
dc.relation.referencesChothia, C., & Lesk, A. M. (1986). The relation between the divergence of sequence and structure in proteins. The EMBO Journal, 5(4), 823–826. https://doi.org/10.1002/J.1460-2075.1986.TB04288.X
dc.relation.referencesChristopoulou, N., & Granneman, S. (2022). The role of RNA-binding proteins in mediating adaptive responses in Gram-positive bacteria. The FEBS Journal, 289(7), 1746–1764. https://doi.org/10.1111/FEBS.15810
dc.relation.referencesClackson, T., & Wells, J. A. (1995). A hot spot of binding energy in a hormone-receptor interface. Science (New York, N.Y.), 267(5196), 383–386. https://doi.org/10.1126/SCIENCE.7529940
dc.relation.referencesCodjoe, F. S., & Donkor, E. S. (2017). Carbapenem Resistance: A Review. Medical Sciences 2018, Vol. 6, Page 1, 6(1), 1. https://doi.org/10.3390/MEDSCI6010001
dc.relation.referencesColovos, C., & Yeates, T. (1993). Verification of protein structures:Patterns of nonbonded atomic interactions.
dc.relation.referencesDanev, R., Yanagisawa, H., & Kikkawa, M. (2019). Cryo-Electron Microscopy Methodology: Current Aspects and Future Directions. In Trends in Biochemical Sciences (Vol. 44, Issue 10, pp. 837–848). Elsevier Ltd. https://doi.org/10.1016/j.tibs.2019.04.008
dc.relation.referencesDarden, T., Perera, L., Li, L., & Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 7, 55–60. http://biomednet.com/elecref/09692126007R0055
dc.relation.referencesDarden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
dc.relation.referencesDasti, A., Cid-Samper, F., Bechara, E., & Tartaglia, G. G. (2020). RNA-centric approaches to study RNA-protein interactions in vitro and in silico. In Methods (Vol. 178, pp. 11–18). Academic Press Inc. https://doi.org/10.1016/j.ymeth.2019.09.011
dc.relation.referencesDeloughery, A., Dengler, V., Chai, Y., & Losick, R. (2016). Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR. Molecular Microbiology, 99(2), 425–437. https://doi.org/10.1111/MMI.13240
dc.relation.referencesDeLoughery, A., Lalanne, J. B., Losick, R., & Li, G. W. (2018). Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 115(24), E5585–E5594. https://doi.org/10.1073/PNAS.1803283115/-/DCSUPPLEMENTAL
dc.relation.referencesDeng, L., Sui, Y., & Zhang, J. (2019). XGBPRH: Prediction of Binding Hot Spots at Protein–RNA Interfaces Utilizing Extreme Gradient Boosting. Genes, 10(3). https://doi.org/10.3390/GENES10030242
dc.relation.referencesDill, K. A., & MacCallum, J. L. (2012). The protein-folding problem, 50 years on. Science (New York, N.Y.), 338(6110), 1042–1046. https://doi.org/10.1126/SCIENCE.1219021
dc.relation.referencesDuan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (1999). A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations.
dc.relation.referencesDym, O., Eisenberg, D., & Yeates, T. O. (2006). Detection of errors in protein models.
dc.relation.referencesEastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang, L. P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R., & Pande, V. S. (2017). OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Computational Biology, 13(7), e1005659. https://doi.org/10.1371/JOURNAL.PCBI.1005659
dc.relation.referencesEscobar Perez, J. A. (2018). Identificación y caracterización de una proteína de unión al gen icaA y evaluación de su potencial participación en la formación de biofilm en Staphylococcus aureus [Instituto de Biotecnología- Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69277
dc.relation.referencesEscobar-Perez, J., Ospina-Garcia, K., Rozo, Z. L. C., Marquez-Ortiz, R. A., Castellanos, J. E., & Gomez, N. V. (2019). Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus Aureus. The Open Bioinformatics Journal, 12(1), 18–29. https://doi.org/10.2174/1875036201912010018
dc.relation.referencesFeenstra, K. A., Hess, B., & Berendsen, H. J. C. (1999). Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. Journal of Computational Chemistry, 20(8), 786–798. https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B
dc.relation.referencesFoster, T. J. (2004). The Staphylococcus aureus “superbug.” Journal of Clinical Investigation, 114(12), 1693–1696. https://doi.org/10.1172/JCI200423825
dc.relation.referencesFoulston, L., Elsholz, A. K. W., DeFrancesco, A. S., & Losick, R. (2014). The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio, 5(5). https://doi.org/10.1128/MBIO.01667-14/FORMAT/EPUB
dc.relation.referencesFrenkel, D., & Smit, B. (2001). Understanding Molecular Simulation: From Algorithms to Applications - Daan Frenkel, B. Smit - Google Libros. https://books.google.com.co/books?hl=es&lr=&id=5qTzldS9ROIC&oi=fnd&pg=PP1&dq=Understanding+molecular+simulation+:+from+algorithms+to+applications&ots=nHPKZnXcWh&sig=toMDMYMZf3sn5T3NWfdM8XaurI8#v=onepage&q=Understanding%20molecular%20simulation%20%3A%20from%20algorithms%20to%20applications&f=false
dc.relation.referencesGenheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. In Expert Opinion on Drug Discovery (Vol. 10, Issue 5, pp. 449–461). Informa Healthcare. https://doi.org/10.1517/17460441.2015.1032936
dc.relation.referencesGjelstad, A., Rasmussen, K. E., & Pedersen-Bjergaard, S. (2009). Electromembrane extraction of basic drugs from untreated human plasma and whole blood under physiological pH conditions. Analytical and Bioanalytical Chemistry, 393(3), 921–928. https://doi.org/10.1007/S00216-008-2344-X/TABLES/3
dc.relation.referencesGoujon, M., Mcwilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., & Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL-EBI. https://doi.org/10.1093/nar/gkq313
dc.relation.referencesGrice, E. A., & Segre, J. A. (2011). The skin microbiome. Nature Reviews. Microbiology, 9(4), 244. https://doi.org/10.1038/NRMICRO2537
dc.relation.referencesGruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., & Hofacker, I. L. (2008). The Vienna RNA websuite. Nucleic Acids Research, 36(Web Server issue). https://doi.org/10.1093/nar/gkn188
dc.relation.referencesGuo, L., Wang, Y., Bi, X., Duo, K., Sun, Q., Yun, X., Zhang, Y., Fei, P., & Han, J. (2020). Antimicrobial activity and mechanism of action of the Amaranthus tricolor crude Extract against Staphylococcus aureus and potential application in cooked meat. Foods, 9(3). https://doi.org/10.3390/foods9030359
dc.relation.referencesHajian-Tilaki, K. (2018). The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Statistical Methods in Medical Research, 27(8), 2374–2383. https://doi.org/10.1177/0962280216680383
dc.relation.referencesHall, K. B. (2002). RNA–protein interactions. Current Opinion in Structural Biology, 12(3), 283–288. https://doi.org/10.1016/S0959-440X(02)00323-8
dc.relation.referencesHamze, K., Julkowska, D., Autret, S., Hinc, K., Nagorska, K., Sekowska, A., Holland, I. B., & Séror, S. J. (2009). Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC. Microbiology, 155(2), 398–412. https://doi.org/10.1099/MIC.0.021477-0/CITE/REFWORKS
dc.relation.referencesHansson, T., Oostenbrink, C., & Van Gunsteren, W. F. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology, 12(2), 190–196. https://doi.org/10.1016/S0959-440X(02)00308-1
dc.relation.referencesHinrichs, R., Pozhydaieva, N., Höfer, K., Graumann, P. L., & Mikrobiologie, L. S. (2021). Y-complex proteins show RNA-dependent binding events at the cell membrane and distinct single molecule dynamics. 1–20.
dc.relation.referencesHofacker, I. L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31(13), 3429–3431. https://doi.org/10.1093/NAR/GKG599
dc.relation.referencesHollingsworth, S. A., & Dror, R. O. (2018). Molecular Dynamics Simulation for All. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/J.NEURON.2018.08.011
dc.relation.referencesHollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. In Biomolecular Concepts (Vol. 1, Issues 3–4, pp. 271–283). De Gruyter Mouton. https://doi.org/10.1515/bmc.2010.022
dc.relation.referencesHospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. In Advances and Applications in Bioinformatics and Chemistry (Vol. 8, Issue 1, pp. 37–47). Dove Medical Press Ltd. https://doi.org/10.2147/AABC.S70333
dc.relation.referencesHsin, J., Arkhipov, A., Yin, Y., Stone, J. E., & Schulten, K. (2008). Using VMD - An Introductory Tutorial. Current Protocols in Bioinformatics / Editoral Board, Andreas D. Baxevanis ... [et Al.], CHAPTER(SUPPL. 24), Unit. https://doi.org/10.1002/0471250953.BI0507S24
dc.relation.referencesHuang, M. J., & Mikhailov, A. (2017). Nano-Swimmers in Lipid-Bilayer Membranes. Modeling of Microscale Transport in Biological Processes, 207–219. https://doi.org/10.1016/B978-0-12-804595-4.00008-0
dc.relation.referencesIlari, A., Savino, C., Fanelli, R., Sapienza, L., & Aldo, P. (2020). Protein structure determination by X-ray crystallography Running head: Protein X-ray structure determination.
dc.relation.referencesIzadi, S., Anandakrishnan, R., & Onufriev, A. V. (2014). Building water models: A different approach. Journal of Physical Chemistry Letters, 5(21), 3863–3871. https://doi.org/10.1021/JZ501780A/SUPPL_FILE/JZ501780A_SI_001.PDF
dc.relation.referencesJeong, E., Chung, I.-F., & Miyano, S. (2004). A Neural Network Method for Identification of RNA-Interacting Residues in Protein.
dc.relation.referencesJin, S., Li, L., Xu, Z., & Zhao, Y. (2020). A random batch Ewald method for particle systems with Coulomb interactions. http://arxiv.org/abs/2010.01559
dc.relation.referencesJones, S., Daley, D. T. A., Luscombe, N. M., Berman, H. M., & Thornton, J. M. (2001). Protein-RNA interactions: a structural analysis. In Nucleic Acids Research (Vol. 29, Issue 4). www.biochem.ucl.ac.uk/bsm/DNA/server
dc.relation.referencesJorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
dc.relation.referencesJumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
dc.relation.referencesKalibaeva, G., Ferrario, M., & Ciccotti, G. (2003). Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Molecular Physics, 101(6), 765–778. https://doi.org/10.1080/0026897021000044025
dc.relation.referencesKarplus, M. (2003). Molecular dynamics of biological macromolecules: A brief history and perspective. Biopolymers, 68(3), 350–358. https://doi.org/10.1002/BIP.10266
dc.relation.referencesKarplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology 2002 9:9, 9(9), 646–652. https://doi.org/10.1038/nsb0902-646
dc.relation.referencesKaus, J. W., Pierce, L. T., Walker, R. C., & McCammon, J. A. (2013). Improving the efficiency of free energy calculations in the amber molecular dynamics package. Journal of Chemical Theory and Computation, 9(9), 4131–4139. https://doi.org/10.1021/ct400340s
dc.relation.referencesKearns, D. B., Chu, F., Branda, S. S., Kolter, R., & Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Molecular Microbiology, 55(3), 739–749. https://doi.org/10.1111/J.1365-2958.2004.04440.X
dc.relation.referencesKhatib, R., Johnson, L. B., Fakih, M. G., Riederer, K., Khosrovaneh, A., Tabriz, M. S., Sharma, M., & Saeed, S. (2009). Persistence in Staphylococcus aureus bacteremia: Incidence, characteristics of patients and outcome. Https://Doi.Org/10.1080/00365540500372846, 38(1), 7–14. https://doi.org/10.1080/00365540500372846
dc.relation.referencesKhemici, V., Prados, J., Linder, P., & Redder, P. (2015). Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation. PLOS Genetics, 11(10), e1005577. https://doi.org/10.1371/JOURNAL.PGEN.1005577
dc.relation.referencesKhor, B. Y., Tye, G. J., Lim, T. S., & Choong, Y. S. (2015). General overview on structure prediction of twilight-zone proteins. Theoretical Biology and Medical Modelling, 12(1). https://doi.org/10.1186/s12976-015-0014-1
dc.relation.referencesKluytmans, J., Van Belkum, A., & Verbrugh, H. (1997). Nasal Carriage of Staphylococcus aureus: Epidemiology, Underlying Mechanisms, and Associated Risks (Vol. 10, Issue 3).
dc.relation.referencesKovács, Á. T. (2019). Bacillus subtilis. Trends in Microbiology, 27(8), 724–725. https://doi.org/10.1016/J.TIM.2019.03.008
dc.relation.referencesKrüger, D. M., Neubacher, S., & Grossmann, T. N. (2018). Protein-RNA interactions: structural characteristics and hotspot amino acids. https://doi.org/10.1261/rna
dc.relation.referencesL. Jorgensen, W., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001
dc.relation.referencesLadomery, M., & Sommerville, J. (1995). A role for Y-box proteins in cell proliferation. BioEssays, 17(1), 9–11. https://doi.org/10.1002/BIES.950170104
dc.relation.referencesLamoureux, G., Harder, E., Vorobyov, I. V., Roux, B., & MacKerell, A. D. (2006). A polarizable model of water for molecular dynamics simulations of biomolecules. Chemical Physics Letters, 418(1–3), 245–249. https://doi.org/10.1016/J.CPLETT.2005.10.135
dc.relation.referencesLaskowski, R., Rullmann, A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR*. In Journal of Biomolecular NMR (Vol. 8). http://www-nmr.chem.ruu.nl/users/rull/
dc.relation.referencesLee, M. C., & Duan, Y. (2004). Distinguish protein decoys by Using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins: Structure, Function, and Bioinformatics, 55(3), 620–634. https://doi.org/10.1002/PROT.10470
dc.relation.referencesLehnik-Habrink, M., Newman, J., Rothe, F. M., Solovyova, A. S., Rodrigues, C., Herzberg, C., Commichau, F. M., Lewis, R. J., & Stülke, J. (2011). RNase Y in Bacillus subtilis: a Natively Disordered Protein That Is the Functional Equivalent of RNase E from Escherichia coli. Journal of Bacteriology, 193(19), 5431. https://doi.org/10.1128/JB.05500-11
dc.relation.referencesLevitt, M., & Huber, R. (1983). Molecular dynamics of native protein: II. Analysis and nature of motion. Journal of Molecular Biology, 168(3), 621–657. https://doi.org/10.1016/S0022-2836(83)80306-4
dc.relation.referencesLewis, B. A., Walia, R. R., Terribilini, M., Ferguson, J., Zheng, C., Honavar, V., & Dobbs, D. (2011). PRIDB: a protein–RNA interface database. Nucleic Acids Research, 39(Database issue), D277. https://doi.org/10.1093/NAR/GKQ1108
dc.relation.referencesLi, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y. M., Buso, N., & Lopez, R. (2015). The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Research, 43(W1), W580–W584. https://doi.org/10.1093/NAR/GKV279
dc.relation.referencesLi, Y., Lyu, J., Wu, Y., Liu, Y., & Huang, G. (2022). PRIP: A Protein-RNA Interface Predictor Based on Semantics of Sequences. Life, 12(2). https://doi.org/10.3390/LIFE12020307
dc.relation.referencesLiu, Z. P., Wu, L. Y., Wang, Y., Zhang, X. S., & Chen, L. (2010). Prediction of protein–RNA binding sites by a random forest method with combined features. Bioinformatics, 26(13), 1616–1622. https://doi.org/10.1093/BIOINFORMATICS/BTQ253
dc.relation.referencesLozano-Aponte, J., & Scior, T. (2014). What do you know about... Molecular Dynamics? Revista Mexicana de Ciencias Farmacéuticas. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952014000100010
dc.relation.referencesLunin, V. Y., Urzhumtsev, A., Bockmayr, A., Fokin, A., Urzhumtsev, A., Afonine, P., Lunin, V. Y., Harding, M., Turkenburg, M., Ballard, C., & Howard-Eales, M. (2002). Theory and Techniques 12. Binary Integer Programming and its Use for Envelope Determination Bulk Solvent Correction for Yet Unsolved Structures Search of the Optimal Strategy for Refinement of Atomic Models Metal Coordination Groups in Proteins: Some Comments on Geometry, Constitution and B-values. http://www.iucr.org
dc.relation.referencesMacke, T. J., Ecker, D. J., Gutell, R. R., Gautheret, D., Case, D. A., & Sampath, R. (2001). RNAMotif, an RNA secondary structure definition and search algorithm. In Nucleic Acids Research (Vol. 29, Issue 22). http://bioinfo.math.rpi.edu/~zukerm/rna/energy/.
dc.relation.referencesMariani, V., Biasini, M., Barbato, A., & Schwede, T. (2013). IDDT: A local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics, 29(21), 2722–2728. https://doi.org/10.1093/bioinformatics/btt473
dc.relation.referencesMarincola, G., & Wolz, C. (2017). Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Research, 45(10), 5980. https://doi.org/10.1093/NAR/GKX296
dc.relation.referencesMarkham, N. R., & Zuker, M. (2008). UNAFold: Software for nucleic acid folding and hybridization. Methods in Molecular Biology, 453, 3–31. https://doi.org/10.1007/978-1-60327-429-6_1/COVER
dc.relation.referencesMaticzka, D., Lange, S. J., Costa, F., & Backofen, R. (2014). GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biology, 15(1), R17. https://doi.org/10.1186/GB-2014-15-1-R17
dc.relation.referencesMcdonald, I. R. (1972). NpT-ensemble Monte Carlo calculations for binary liquid mixtures. In MOLECULAR PHYSICS (Vol. 23, Issue 1).
dc.relation.referencesMcDowell, S. E., Špačková, N., Šponer, J., & Walter, N. G. (2007). Molecular dynamics simulations of RNA: An in silico single molecule approach. Biopolymers, 85(2), 169–184. https://doi.org/10.1002/BIP.20620
dc.relation.referencesMedina, J. S., Prosmiti, R., Villarreal, P., Delgado-Barrio, G., Winter, G., González, B., Alemán, J. V., & Collado, C. (2011). Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity. Chemical Physics, 388(1–3), 9–18. https://doi.org/10.1016/J.CHEMPHYS.2011.07.001
dc.relation.referencesMensa, J., Soriano, A., Barberán José, Montejo, M., Salavert, M., Alvarez-Rocha, L., Maseda, E., Moreno, A., Pasquau, J., Gómez, J., Parra, J., Candel, J., Azanza José, García José Elías, Marco, F., Soy, D., Gray, S., Fortún, J., Aristides de Alárcon, C., & Picazo, J. (2018). Guía de tratamiento antimicrobiano de la infección por Staphylococcus aureus.
dc.relation.referencesMirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/s41592-022-01488-1
dc.relation.referencesMlýnský, V., Kührová, P., Kühr, T., Otyepka, M., Bussi, G., Banáš, P., & Šponer, J. (2020). Fine-tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. https://doi.org/10.1101/2020.03.08.982538
dc.relation.referencesMonticelli, L., Kandasamy, S. K., Periole, X., Larson, R. G., Tieleman, D. P., & Marrink, S. J. (2008). The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation, 4(5), 819–834. https://doi.org/10.1021/CT700324X
dc.relation.referencesMonticelli, L., & Tieleman, D. P. (2013). Force Fields for Classical Molecular Dynamics (pp. 197–213). https://doi.org/10.1007/978-1-62703-017-5_8
dc.relation.referencesMoore, P. B., & Steitz, T. A. (2002). The involvement of RNA in ribosome function. Nature 2002 418:6894, 418(6894), 229–235. https://doi.org/10.1038/418229a
dc.relation.referencesMorra, G., & Colombo, G. (2008). Relationship between energy distribution and fold stability: Insights from molecular dynamics simulations of native and mutant proteins. Proteins: Structure, Function and Genetics, 72(2), 660–672. https://doi.org/10.1002/PROT.21963
dc.relation.referencesMorris, A. L., Macarthur, M. W., Hutchinson, E. G., & Thornton’, J. M. (1992). Stereochemical Quality of Protein Structure Coordinates. In PROTEINS: Structure, Function, and Genetics (Vol. 12).
dc.relation.referencesMurray, P. R., Rosenthal, K. S., & Michael A. Pfaller. (1967). Medical Microbiology Ninth Edition. Angewandte Chemie International Edition, 6(11), 951–952., 5–24.
dc.relation.referencesNarumi, T., Susukita, R., Ebisuzaki, T., McNiven, G., & Elmegreen, B. (1999). Molecular Dynamics Machine: Special-Purpose Computer for Molecular Dynamics Simulations. Molecular Simulation, 21(5–6), 401–415. https://doi.org/10.1080/08927029908022078
dc.relation.referencesNose, S. (1991). Constant Temperature Molecular Dynamics Methods. Progress of Theoretical Physics Supplement, 103. https://doi.org/10.1143/PTPS.103.1/1894286
dc.relation.referencesNurisso, A., Daina, A., & Walker, R. C. (2012). A practical introduction to molecular dynamics simulations: Applications to homology modeling. Methods in Molecular Biology, 857, 137–173. https://doi.org/10.1007/978-1-61779-588-6_6
dc.relation.referencesNutt, D. R., & Smith, J. C. (2007). Molecular dynamics simulations of proteins: Can the explicit water model be varied? Journal of Chemical Theory and Computation, 3(4), 1550–1560. https://doi.org/10.1021/ct700053u
dc.relation.referencesOhniwa, R. L., Ushijima, Y., Saito, S., & Morikawa, K. (2011). Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. PLOS ONE, 6(4), e19172. https://doi.org/10.1371/JOURNAL.PONE.0019172
dc.relation.referencesPavan, M., Bassani, D., Sturlese, M., & Moro, S. (2022). Investigating RNA-protein recognition mechanisms through supervised molecular dynamics (SuMD) simulations. NAR Genomics and Bioinformatics, 4(4). https://doi.org/10.1093/nargab/lqac088
dc.relation.referencesPagliuso, A., Tham, T. N., Allemand, E., Robertin, S., Dupuy, B., Bertrand, Q., Bécavin, C., Koutero, M., Najburg, V., Nahori, M. A., Tangy, F., Stavru, F., Bessonov, S., Dessen, A., Muchardt, C., Lebreton, A., Komarova, A. V., & Cossart, P. (2019). An RNA-Binding Protein Secreted by a Bacterial Pathogen Modulates RIG-I Signaling. Cell Host & Microbe, 26(6), 823-835.e11. https://doi.org/10.1016/J.CHOM.2019.10.004
dc.relation.referencesPasachova Garzón, J., Ramirez Martinez, S., & Munoz Molina, L. (2019). Staphylococcus aureus: generalidades, mecanismos de patogenicidad y colonización celular.
dc.relation.referencesPatiyal, S., Dhall, A., Bajaj, K., Sahu, H., & Raghava, G. P. S. (2023). Prediction of RNA-interacting residues in a protein using CNN and evolutionary profile. Briefings in Bioinformatics, 24(1). https://doi.org/10.1093/bib/bbac538
dc.relation.referencesPatodia, S. (2014). Molecular dynamics simulation of protein Physical Chemistry & Biophysics. J Phys Chem Biophys, 4, 6. https://doi.org/10.4172/2161-0398.1000166
dc.relation.referencesPerez, D., Uberuaga, B. P., Shim, Y., Amar, J. G., & Voter, A. F. (2009). Chapter 4 Accelerated Molecular Dynamics Methods: Introduction and Recent Developments. In Annual Reports in Computational Chemistry (Vol. 5, pp. 79–98). https://doi.org/10.1016/S1574-1400(09)00504-0
dc.relation.referencesPerez, R. K., Gordon, M. G., Subramaniam, M., Kim, M. C., Hartoularos, G. C., Targ, S., Sun, Y., Ogorodnikov, A., Bueno, R., Lu, A., Thompson, M., Rappoport, N., Dahl, A., Lanata, C. M., Matloubian, M., Maliskova, L., Kwek, S. S., Li, T., Slyper, M., … Ye, C. J. (2022). Single-cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus. Science (New York, N.Y.), 376(6589), eabf1970. https://doi.org/10.1126/SCIENCE.ABF1970
dc.relation.referencesPeriasamy, S., Joo, H. S., Duong, A. C., Bach, T. H. L., Tan, V. Y., Chatterjee, S. S., Cheung, G. Y. C., & Otto, M. (2012). How Staphylococcus aureus biofilms develop their characteristic structure. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1281–1286. https://doi.org/10.1073/PNAS.1115006109
dc.relation.referencesPhillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/JCC.20289
dc.relation.referencesPiatkowski, P. , Kasprzak, J. M. , Kumar, D. , Magnus, M. , Chojnowski, G. , & Bujnicki, J. M. (2016). RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS. Methods in molecular biology. 217–235. https://doi.org/https://doi.org/10.1007/978-1-4939-6433-8_14
dc.relation.referencesPlimpton, S. (1994). SANDIAREPORT A New Parallel Method for Molecular Dynamics Simulation of Macromoiecular Systems SF2gOOQ(8-8] ) q.
dc.relation.referencesPinamonti, G., Bottaro, S., Micheletti, C., & Bussi, G. (2015). Elastic network models for RNA: a comparative assessment with molecular dynamics and SHAPE experiments. Nucleic Acids Research, 43(15), 7260. https://doi.org/10.1093/NAR/GKV708
dc.relation.referencesPoier, P. P., Lagardère, L., Piquemal, J.-P., & Jensen, F. (2019). Molecular Dynamics using Non-variational Polarizable Force Fields: Theory, Periodic Boundary Conditions Implementation and Application to the Bond Capacity Model.
dc.relation.referencesPokorná, P., Kruse, H., Krepl, M., & Šponer, J. (2018). QM/MM Calculations on Protein-RNA Complexes: Understanding Limitations of Classical MD Simulations and Search for Reliable Cost-Effective QM Methods. Journal of Chemical Theory and Computation, 14(10), 5419–5433. https://doi.org/10.1021/ACS.JCTC.8B00670
dc.relation.referencesPopenda, M., Szachniuk, M., Antczak, M., Purzycka, K. J., Lukasiak, P., Bartol, N., Blazewicz, J., & Adamiak, R. W. (2012). Automated 3D structure composition for large RNAs. Nucleic Acids Research, 40(14). https://doi.org/10.1093/nar/gks339
dc.relation.referencesPyle, A. M. (1993). Ribozymes: a distinct class of metalloenzymes. Science (New York, N.Y.), 261(5122), 709–714. https://doi.org/10.1126/SCIENCE.7688142
dc.relation.referencesRamanathan, M., Porter, D. F., & Khavari, P. A. (2019). Methods to study RNA–protein interactions. Nature Methods 2019 16:3, 16(3), 225–234. https://doi.org/10.1038/s41592-019-0330-1
dc.relation.referencesRedmill, P. S., Capps, S. L., Cummings, P. T., & McCabe, C. (2009). A molecular dynamics study of the Gibbs free energy of solvation of fullerene particles in octanol and water. Carbon, 47(12), 2865–2874. https://doi.org/10.1016/j.carbon.2009.06.040
dc.relation.referencesRicci, C. G., De Andrade, A. S. C., Mottin, M., & Netz, P. A. (2010). Molecular dynamics of DNA: Comparison of force fields and terminal nucleotide definitions. Journal of Physical Chemistry B, 114(30), 9882–9893. https://doi.org/10.1021/jp1035663
dc.relation.referencesRobert L. Buchanan, & Myron Solberg. (1972). INTERACTION_OF_SODIUM_NITRATE_OXYGEN_AND.
dc.relation.referencesRocchetti, T. T., Martins, K. B., Martins, P. Y. F., Oliveira, R. A. de, Mondelli, A. L., Fortaleza, C. M. C. B., & Cunha, M. de L. R. de S. da. (2018). Detection of the mecA gene and identification of Staphylococcus directly from blood culture bottles by multiplex polymerase chain reaction. Brazilian Journal of Infectious Diseases, 22(2), 99–105. https://doi.org/10.1016/j.bjid.2018.02.006
dc.relation.referencesRoman Laskowski, B. A., Macarthur, M. W., & Thornton, J. M. (1983). Computer Programs PROCHECK: a program to check the stereochemicai quality of protein structures. In Phys. Status Solidi B (Vol. 13).
dc.relation.referencesRomby, P., & Charpentier, E. (2010). An overview of RNAs with regulatory functions in gram-positive bacteria. In Cellular and Molecular Life Sciences (Vol. 67, Issue 2, pp. 217–237). https://doi.org/10.1007/s00018-009-0162-8
dc.relation.referencesRosales-Pelaez, P., Sanchez-Burgos, I., Valeriani, C., Vega, C., & Sanz, E. (2020). Seeding Approach to nucleation in the NVT ensemble: the case of bubble cavitation in overstretched Lennard Jones fluids. https://doi.org/10.1103/PhysRevE.101.022611
dc.relation.referencesRowlinson, M. C., LeBourgeois, P., Ward, K., Song, Y., Finegold, S. M., & Bruckner, D. A. (2006). Isolation of a Strictly Anaerobic Strain of Staphylococcus epidermidis. Journal of Clinical Microbiology, 44(3), 857. https://doi.org/10.1128/JCM.44.3.857-860.2006
dc.relation.referencesSalo-Ahen, O. M. H., Alanko, I., Bhadane, R., Alexandre, A. M., Honorato, R. V., Hossain, S., Juffer, A. H., Kabedev, A., Lahtela-Kakkonen, M., Larsen, A. S., Lescrinier, E., Marimuthu, P., Mirza, M. U., Mustafa, G., Nunes-Alves, A., Pantsar, T., Saadabadi, A., Singaravelu, K., & Vanmeert, M. (2021). Molecular dynamics simulations in drug discovery and pharmaceutical development. In Processes (Vol. 9, Issue 1, pp. 1–63). MDPI AG. https://doi.org/10.3390/pr9010071
dc.relation.referencesSarzynska, J., Popenda, M., Antczak, M., & Szachniuk, M. (2023). RNA tertiary structure prediction using RNAComposer in CASP15. Proteins: Structure, Function and Bioinformatics, 91(12), 1790–1799. https://doi.org/10.1002/prot.26578
dc.relation.referencesSasse, A., Laverty, K. U., Hughes, T. R., & Morris, Q. D. (2018). Motif models for RNA-binding proteins. In Current Opinion in Structural Biology (Vol. 53, pp. 115–123). Elsevier Ltd. https://doi.org/10.1016/j.sbi.2018.08.001
dc.relation.referencesSteffen, P., Voß, B., Rehmsmeier, M., Reeder, J., & Giegerich, R. (2006). RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics, 22(4), 500–503. https://doi.org/10.1093/BIOINFORMATICS/BTK010
dc.relation.referencesSteinbach, P. J., & Brooks, B. R. (1994). New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation STEINBACH AND BROOKS. In Journal of Computational Chemistry (Vol. 15, Issue 7).
dc.relation.referencesStillinger, F. H., & Rahman, A. (2003). Improved simulation of liquid water by molecular dynamics. The Journal of Chemical Physics, 60(4), 1545. https://doi.org/10.1063/1.1681229
dc.relation.referencesSugiura, R., Satoh, R., Ishiwata, S., Umeda, N., & Kita, A. (2011). Role of RNA-Binding Proteins in MAPK Signal Transduction Pathway. Journal of Signal Transduction, 2011, 1–8. https://doi.org/10.1155/2011/109746
dc.relation.referencesSuzuki, M., Gerstein, M., & Yagi, N. (1994). Stereochemical basis of DNA recognition by Zn fingers. In Nucleic Acids Research (Vol. 22, Issue 16). http://nar.oxfordjournals.org/
dc.relation.referencesSzachniuk, M., Sarzyńska, J., & Blazewicz, J. (2013). Turning data into folds using RNAComposer. AIP Conference Proceedings, 1559, 353–354. https://doi.org/10.1063/1.4825029
dc.relation.referencesTang, S., Li, J., Huang, G., & Yan, L. (2021). Predicting Protein Surface Property with its Surface Hydrophobicity. Protein & Peptide Letters, 28(8), 938–944. https://doi.org/10.2174/0929866528666210222160603
dc.relation.referencesTanner, A. W., Carabetta, V. J., Martinie, R. J., Mashruwala, A. A., Boyd, J. M., Krebs, C., & Dubnau, D. (2017). The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S]2+ clusters and may respond to redox changes. Molecular Microbiology, 104(5), 837. https://doi.org/10.1111/MMI.13667
dc.relation.referencesTobi, D., & Bahar, I. (2005). Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 18908–18913. https://doi.org/10.1073/PNAS.0507603102
dc.relation.referencesTorrisi, M., Pollastri, G., & Le, Q. (2020). Deep learning methods in protein structure prediction. Computational and Structural Biotechnology Journal, 18, 1301–1310. https://doi.org/10.1016/J.CSBJ.2019.12.011
dc.relation.referencesTortosa, P., Albano, M., & Dubnau, D. (2000). Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Molecular Microbiology, 35(5), 1110–1119. https://doi.org/10.1046/J.1365-2958.2000.01779.X
dc.relation.referencesToukmaji, A. Y., & Board, J. A. (1996). Ewald summation techniques in perspective: a survey. In Computer Physics Communications (Vol. 95).
dc.relation.referencesTrendel, J., Schwarzl, T., Horos, R., Prakash, A., Bateman, A., Hentze, M. W., & Krijgsveld, J. (2019). The Human RNA-Binding Proteome and Its Dynamics during Translational Arrest. Cell, 176(1–2), 391-403.e19. https://doi.org/10.1016/J.CELL.2018.11.004/ATTACHMENT/E3562894-90AA-4BA4-96A4-2B801FCD0CF2/MMC6.PDF
dc.relation.referencesValero, A., Pérez-Rodríguez, F., Carrasco, E., Fuentes-Alventosa, J. M., García-Gimeno, R. M., & Zurera, G. (2009). Modelling the growth boundaries of Staphylococcus aureus: Effect of temperature, pH and water activity. International Journal of Food Microbiology, 133(1–2), 186–194. https://doi.org/10.1016/J.IJFOODMICRO.2009.05.023
dc.relation.referencesVaradi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2021). NAR Breakthrough Article AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50. https://doi.org/10.1093/nar/gkab1061
dc.relation.referencesVlachakis, D., Bencurova, E., Papangelopoulos, N., & Kossida, S. (2014). Current State-of-the-Art Molecular Dynamics Methods and Applications. Advances in Protein Chemistry and Structural Biology, 94, 269–313. https://doi.org/10.1016/B978-0-12-800168-4.00007-X
dc.relation.referencesWang, L., Huang, C., Yang, M. Q., & Yang, J. Y. (2010). BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Systems Biology, 4(Suppl 1), S3. https://doi.org/10.1186/1752-0509-4-S1-S3
dc.relation.referencesWang, L., You, Z. H., Huang, D. S., & Zhou, F. (2020). Combining High Speed ELM Learning with a Deep Convolutional Neural Network Feature Encoding for Predicting Protein-RNA Interactions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(3), 972–980. https://doi.org/10.1109/TCBB.2018.2874267
dc.relation.referencesWang, W., Donini, O., Reyes, C. M., & Kollman, P. A. (2001). BIOMOLECULAR SIMULATIONS: Recent Developments in Force Fields, Simulations of Enzyme Catalysis, Protein-Ligand, Protein-Protein, and Protein-Nucleic Acid Noncovalent Interactions. www.annualreviews.org
dc.relation.referencesWarren L. DeLano. (2004). PyMOL User’s Guide
dc.relation.referencesWheeler, E. C., Van Nostrand, E. L., & Yeo, G. W. (2018). Advances and challenges in the detection of transcriptome-wide protein–RNA interactions. Wiley Interdisciplinary Reviews: RNA, 9(1). https://doi.org/10.1002/wrna.1436
dc.relation.referencesWilliams, S. G., & Lovell, S. C. (2009). The Effect of Sequence Evolution on Protein Structural Divergence. Molecular Biology and Evolution, 26(5), 1055–1065. https://doi.org/10.1093/MOLBEV/MSP020
dc.relation.referencesWindbichler, N., & Schroeder, R. (2006). Isolation of specific RNA-binding proteins using the streptomycin-binding RNA aptamer. Nature Protocols 2006 1:2, 1(2), 637–640. https://doi.org/10.1038/nprot.2006.95
dc.relation.referencesWlodawer, A. (2017). Stereochemistry and validation of macromolecular structures. In Methods in Molecular Biology (Vol. 1607, pp. 595–610). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7000-1_24
dc.relation.referencesWorld Health Organization. (2022). Antimicrobial Resistance Multi-Partner Trust Fund annual report 2022.
dc.relation.referencesYan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S. Y. (2017). HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Research, 45(W1), W365–W373. https://doi.org/10.1093/NAR/GKX407
dc.relation.referencesYang, Z., Zeng, X., Zhao, Y., & Chen, R. (2023). AlphaFold2 and its applications in the fields of biology and medicine. In Signal Transduction and Targeted Therapy (Vol. 8, Issue 1). Springer Nature. https://doi.org/10.1038/s41392-023-01381-z
dc.relation.referencesYao, Z., Weinberg, Z., & Ruzzo, W. L. (2006). CMfinder - A covariance model based RNA motif finding algorithm. Bioinformatics, 22(4), 445–452. https://doi.org/10.1093/bioinformatics/btk008
dc.relation.referencesYildirim, I., Stern, H. A., Kennedy, S. D., Tubbs, J. D., & Turner, D. H. (2010). Reparameterization of RNA χ torsion parameters for the AMBER force field and comparison to NMR spectra for cytidine and uridine. Journal of Chemical Theory and Computation, 6(5), 1520–1531. https://doi.org/10.1021/ct900604a
dc.relation.referencesYildirim, I., Stern, H. A., Tubbs, J. D., Kennedy, S. D., & Turner, D. H. (2011). Benchmarking AMBER force fields for RNA: Comparisons to NMR spectra for single-stranded r(GACC) are improved by revised Χ torsions. Journal of Physical Chemistry B, 115(29), 9261–9270. https://doi.org/10.1021/jp2016006
dc.relation.referencesYusuf, D., Butland, S. L., Swanson, M. I., Bolotin, E., Ticoll, A., Cheung, W. A., Zhang, X. Y. C., Dickman, C. T. D., Fulton, D. L., Lim, J. S., Schnabl, J. M., Ramos, O. H. P., Vasseur-Cognet, M., de Leeuw, C. N., Simpson, E. M., Ryffel, G. U., Lam, E. W. F., Kist, R., Wilson, M. S. C., … Hevner, R. F. (2012). The transcription factor encyclopedia. Genome Biology, 13(3). https://doi.org/10.1186/gb-2012-13-3-r24
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.rights.accessrightsrl.org/coar/access_right/c_14cbhttp://pu
dc.rights.localAcceso cerradospa
dc.subjectStaphylococcus aureus
dc.subjectYlbF
dc.subjectDinámica molecular
dc.subjectin sílico
dc.subjectSimulación
dc.subjectEnergías intermoleculares
dc.subject.ddc610.28
dc.subject.keywordsStaphylococcus aureus
dc.subject.keywordsYlbF
dc.subject.keywordsMolecular dynamics
dc.subject.keywordsin silico
dc.subject.keywordsSimulation
dc.subject.keywordsIntermolecular Energies
dc.titleDesarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN
dc.title.translatedDevelopment of an in silico methodological protocol to understand the possible interactions between the Staphylococcus aureus YlbF protein with RNA
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Trabajo de grado.pdf
Tamaño:
3.92 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 2 de 2
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de aprobacion.pdf
Tamaño:
113.39 KB
Formato:
Adobe Portable Document Format
Descripción:

Colecciones