Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN
dc.contributor.advisor | Guillem Gloria, Pedro Manuel | |
dc.contributor.advisor | Corredor Rozo, Zayda Lorena | |
dc.contributor.author | Ruiz Castellanos, Julian Santiago | |
dc.date.accessioned | 2024-11-30T06:43:02Z | |
dc.date.available | 2024-11-30T06:43:02Z | |
dc.date.issued | 2024-11 | |
dc.description.abstract | La proteína YlbF, que forma parte de la familia de proteínas con dominio com_ylbF estudiadas principalmente en Bacillus subtilis, está involucrada en la regulación de la formación de biofilm, competencia y esporulación. Dado que este dominio es conservado, se postula que proteínas homólogas en otras bacterias Gram positivas podrían cumplir funciones similares. En Staphylococcus aureus, un microorganismo oportunista que causa infecciones intrahospitalarias en pacientes de alto riesgo se sospecha que YlbF está relacionada con la regulación de factores de virulencia, especialmente a nivel transcripcional, como sugiere la presencia de un dominio putativo de unión a ácidos nucleicos y estudios en mutantes nulos. En este proyecto de grado elaboró un protocolo bioinformático centrado en el desarrollo de un pipeline para obtener parámetros y llevar a cabo una dinámica molecular de la proteína YlbF de S. aureus en complejo con ARN, con el objetivo de evaluar posibles sitios de interacción (hotspots) en términos de energías, distancias y empaquetamiento hidrofóbico y su validación mediante metodologías in silico de análisis termodinámico. El flujo de trabajo incluyó la preparación de datos biológicos, obtención de estructuras proteicas y de ARN, definición de parámetros de simulación, construcción de los sistemas a simular, así como la ejecución de la dinámica molecular, su análisis y validación al realizar sustituciones clave por alanina para evaluar los cambios en las interacciones llevando a cabo un análisis comparativo de energías por aminoácido el fin de identificar aquellos residuos que presentan las energías más favorables entre las variantes mutantes y no mutantes. Hecho esto, se observó la participación de diferentes aminoácidos durante la simulación, destacando Arg193, Lys194, Arg207 y Arg209. Estos residuos mostraron una fuerte interacción con el ARN, lo que sugiere una unión potencialmente estable. La naturaleza de esta interacción parece estar relacionada con la carga positiva de estos aminoácidos, que facilita su unión a los grupos fosfato de la cadena de ARN. | |
dc.description.abstractenglish | The YlbF protein, part of the com_ylbF domain family studied mainly in Bacillus subtilis, is involved in the regulation of biofilm formation, competence, and sporulation. Given the conserved nature of this domain, it is hypothesized that homologous proteins in other Gram-positive bacteria might perform similar functions. In Staphylococcus aureus, an opportunistic microorganism responsible for nosocomial infections in high-risk patients, YlbF is suspected to be linked to the regulation of virulence factors, particularly at the transcriptional level, as indicated by the presence of a putative nucleic acid-binding domain and studies in null mutants. In this degree project, a bioinformatics protocol was developed, focusing on creating a pipeline to obtain parameters and conduct molecular dynamics simulations of the S. aureus YlbF protein in complex with RNA. The goal was to evaluate potential interaction sites (hotspots) in terms of energies, distances, and hydrophobic packing, and validate these through in silico thermodynamic analysis methodologies. The workflow included preparing biological data, obtaining protein and RNA structures, defining simulation parameters, constructing the systems to be simulated, executing molecular dynamics, analyzing the results, and validating key substitutions with alanine to assess changes in interactions. This included a comparative analysis of energies per amino acid to identify residues showing the most favorable energies between mutant and non-mutant variants. As a result, different amino acids were highlighted during the simulation, with Arg193, Lys194, Arg207, and Arg209 showing strong interactions with RNA, suggesting a potentially stable binding. This interaction is likely related to the positive charge of these amino acids, which facilitates their binding to the phosphate groups of the RNA chain. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bioingeniero | spa |
dc.description.sponsorship | Laboratorio de genética molecular bacteriana | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13493 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Bioingeniería | spa |
dc.relation.references | Abellan Blázquez, A. (2016). Bacteriemias por Staphylococcus Aureus en el Hospital Clinico Universitario Virgen de la Arrixaca. Estudio Epidemiológico, Clínico y Molecular. Universidad de Murcia. | |
dc.relation.references | Abeywansha, T., Huang, W., Ye, X., Nawrocki, A., Lan, X., Jankowsky, E., Taylor, D. J., & Zhang, Y. (2023). The structural basis of tRNA recognition by arginyl-tRNA-protein transferase. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-38004-8 | |
dc.relation.references | Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001 | |
dc.relation.references | Achar, A., & Sætrom, P. (2015). RNA motif discovery: A computational overview. In Biology Direct (Vol. 10, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13062-015-0090-5 | |
dc.relation.references | Adusei-Danso, F., Khaja, F. T., Desantis, M., Jeffrey, P. D., Dubnau, E., Demeler, B., Neiditch, M. B., & Dubnau, D. (2019). Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing. https://doi.org/10.1128/mBio | |
dc.relation.references | Aguilar-Salazar, A., Martínez-Vázquez, A. V., Aguilera-Arreola, G., de Jesus de Luna-Santillana, E., Cruz-Hernández, M. A., Escobedo-Bonilla, C. M., Lara-Ramírez, E., Sánchez-Sánchez, M., Guerrero, A., Rivera, G., & Bocanegra-Garcia, V. (2023). Prevalence of ESKAPE Bacteria in Surface Water and Wastewater Sources: Multidrug Resistance and Molecular Characterization, an Updated Review. In Water (Switzerland) (Vol. 15, Issue 18). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/w15183200 | |
dc.relation.references | Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8), 831–838. https://doi.org/10.1038/NBT.3300 | |
dc.relation.references | Archer, N. K., Mazaitis, M. J., William Costerton, J., Leid, J. G., Powers, M. E., & Shirtliff, M. E. (2011). Staphylococcus aureus biofilms. Https://Doi.Org/10.4161/Viru.2.5.17724, 2(5), 445–459. https://doi.org/10.4161/VIRU.2.5.17724 | |
dc.relation.references | Atkins, P., & de Paula, J. (2010). Physical Chemistry. | |
dc.relation.references | Aytenfisu, A. H., Spasic, A., Grossfield, A., Stern, H. A., & Mathews, D. H. (2017). Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics. Journal of Chemical Theory and Computation, 13(2), 900–915. https://doi.org/10.1021/ACS.JCTC.6B00870/SUPPL_FILE/CT6B00870_SI_002.ZIP | |
dc.relation.references | Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME Suite: Tools for motif discovery and searching. Nucleic Acids Research, 37(SUPPL. 2). https://doi.org/10.1093/nar/gkp335 | |
dc.relation.references | Balasubramanian, D., Harper, L., Shopsin, B., & Torres, V. J. (2017). Staphylococcus aureus pathogenesis in diverse host environments. Pathogens and Disease, 75(1), 5. https://doi.org/10.1093/FEMSPD/FTX005 | |
dc.relation.references | Barbieri, I., & Kouzarides, T. (2020). Role of RNA modifications in cancer. Nature Reviews Cancer 2020 20:6, 20(6), 303–322. https://doi.org/10.1038/s41568-020-0253-2 | |
dc.relation.references | Becker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27(4), 870–926. https://doi.org/10.1128/CMR.00109-13 | |
dc.relation.references | Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/NAR/28.1.235 | |
dc.relation.references | Beššeová, I., Banáš, P., Kührová, P., Košinová, P., Otyepka, M., & Šponer, J. (2012). Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration. Journal of Physical Chemistry B, 116(33), 9899–9916. https://doi.org/10.1021/jp3014817 | |
dc.relation.references | Bheemireddy, S., Sandhya, S., Srinivasan, N., & Sowdhamini, R. (2022). Computational tools to study RNA-protein complexes. Frontiers in Molecular Biosciences, 9. https://doi.org/10.3389/FMOLB.2022.954926/FULL | |
dc.relation.references | Bordin, N., Sillitoe, I., Lees, J. G., & Orengo, C. (2021). Tracing Evolution Through Protein Structures: Nature Captured in a Few Thousand Folds. Frontiers in Molecular Biosciences, 8, 668184. https://doi.org/10.3389/FMOLB.2021.668184/BIBTEX | |
dc.relation.references | Borukhov, S., Lee, J., & Laptenko, O. (2005). Bacterial transcription elongation factors: New insights into molecular mechanism of action. In Molecular Microbiology (Vol. 55, Issue 5, pp. 1315–1324). https://doi.org/10.1111/j.1365-2958.2004.04481.x | |
dc.relation.references | Bosko, J. T., Todd, B. D., & Sadus, R. J. (2005). Molecular simulation of dendrimers and their mixtures under shear: Comparison of isothermal-isobaric (NpT) and isothermal-isochoric (NVT) ensemble systems. Journal of Chemical Physics, 123(3). https://doi.org/10.1063/1.1946749 | |
dc.relation.references | Branda, S. S., González-Pastor, J. E., Dervyn, E., Ehrlich, S. D., Losick, R., & Kolter, R. (2004). Genes involved in formation of structured multicellular communities by Bacillus subtilis. Journal of Bacteriology, 186(12), 3970–3979. https://doi.org/10.1128/JB.186.12.3970-3979.2004 | |
dc.relation.references | Brantl, S., & Ul Haq, I. (2023). Small proteins in Gram-positive bacteria. In FEMS Microbiology Reviews (Vol. 47, Issue 6). Oxford University Press. https://doi.org/10.1093/femsre/fuad064 | |
dc.relation.references | Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/JCC.21287 | |
dc.relation.references | Carabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular Microbiology, 88(2), 283–300. https://doi.org/10.1111/MMI.12186 | |
dc.relation.references | Carver, T. J., Rutherford, K. M., Berriman, M., Rajandream, M.-A., Barrell, B. G., & Parkhill, J. (2005). ACT: the Artemis comparison tool. Bioinformatics, 21(16), 3422–3423. https://doi.org/10.1093/BIOINFORMATICS/BTI553 | |
dc.relation.references | Case, D. A., Darden Thomas Cheatham III Carlos Simmerling Junmei Wang, T. E., Duke, R. E., Crowley Ross Walker Wei Zhang Kenneth Merz Bing Wang Seth Hayik Adrian Roitberg Gustavo Seabra István Kolossváry Budapest, M. M., Shaw Kim Wong, D. F., Paesani, F., Vanicek Xiongwu Wu Scott Brozell Thomas Steinbrecher Holger Gohlke Lijiang Yang Chunhu Tan John Mongan Viktor Hornak Guanglei Cui David H Mathews Matthew G Seetin Celeste Sagui Volodymyr Babin Peter A Kollman, J. R., Pearlman Robert V Stanton Jed Pitera Irina Massova Ailan Cheng James J Vincent Paul Beroza Vickie Tsui Christian Schafmeister Wilson S Ross Randall Radmer George L Seibel James W Caldwell U Chandra Singh Paul Weiner, D. A., & Cieplak Yong Duan Rob Woods Karl Kirschner Sarah Tschampel Alexey Onufriev Christopher Bayly Wendy Cornell Scott Weiner Austin Yongye Matthew Tessier, P. M. (2008). Amber 10 Users’ Manual Principal contributors to the current codes: Additional key contributors to earlier versions: Additional key people involved in force field development. http://amber.scripps.edu/contributors.html. | |
dc.relation.references | Case Thomas E Cheatham, D. A. (2023). Amber 2023 Reference Manual Principal contributors to the current codes. https://ambermd.org/contributors.html | |
dc.relation.references | Centers for Disease Control and Prevention. (2019). Staphylococcus aureus in Healthcare Settings | HAI | CDC. https://www.cdc.gov/hai/organisms/staph.html | |
dc.relation.references | Cervantes-García, E., García-González, R., & María Salazar-Schettino, P. (2014). Características generales del Staphylococcus aureus. Rev Latinoam Patol Clin Med Lab, 61(1), 28–40. www.medigraphic.com/patologiaclinicawww.medigraphic.org.mx | |
dc.relation.references | Chambers, H. F. (2001). The changing epidemiology of Staphylococcus aureus? Emerging Infectious Diseases, 7(2), 178. https://doi.org/10.3201/EID0702.010204 | |
dc.relation.references | Chakrabarti, P., & Pal, D. (2001). The interrelationships of side-chain and main-chain conformations in proteins. In Progress in Biophysics & Molecular Biology (Vol. 76). | |
dc.relation.references | Chen, A., Zhao, N., & Hou, Z. (2017). The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study. Soft Matter, 13(45), 8625–8635. https://doi.org/10.1039/C7SM01854A | |
dc.relation.references | Chen, C. P., Hwang, R. L., Chang, S. Y., & Lu, Y. T. (2011). Effects of temperature steps on human skin physiology and thermal sensation response. Building and Environment, 46(11), 2387–2397. https://doi.org/10.1016/j.buildenv.2011.05.021 | |
dc.relation.references | Chen, D., Wang, Z., Guo, D., Orekhov, V., & Qu, X. (2020). Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy. In Chemistry - A European Journal (Vol. 26, Issue 46, pp. 10391–10401). Wiley-VCH Verlag. https://doi.org/10.1002/chem.202000246 | |
dc.relation.references | Chmielowiec-Korzeniowska, A., Tymczyna, L., Wlazło, Ł., Nowakowicz-Dębek, B., & Trawińska, B. (2020). Staphylococcus aureus carriage state in healthy adult population and phenotypic and genotypic properties of isolated strains. Postepy Dermatologii i Alergologii, 37(2), 184–189. https://doi.org/10.5114/ada.2020.94837 | |
dc.relation.references | Chothia, C., & Lesk, A. M. (1986). The relation between the divergence of sequence and structure in proteins. The EMBO Journal, 5(4), 823–826. https://doi.org/10.1002/J.1460-2075.1986.TB04288.X | |
dc.relation.references | Christopoulou, N., & Granneman, S. (2022). The role of RNA-binding proteins in mediating adaptive responses in Gram-positive bacteria. The FEBS Journal, 289(7), 1746–1764. https://doi.org/10.1111/FEBS.15810 | |
dc.relation.references | Clackson, T., & Wells, J. A. (1995). A hot spot of binding energy in a hormone-receptor interface. Science (New York, N.Y.), 267(5196), 383–386. https://doi.org/10.1126/SCIENCE.7529940 | |
dc.relation.references | Codjoe, F. S., & Donkor, E. S. (2017). Carbapenem Resistance: A Review. Medical Sciences 2018, Vol. 6, Page 1, 6(1), 1. https://doi.org/10.3390/MEDSCI6010001 | |
dc.relation.references | Colovos, C., & Yeates, T. (1993). Verification of protein structures:Patterns of nonbonded atomic interactions. | |
dc.relation.references | Danev, R., Yanagisawa, H., & Kikkawa, M. (2019). Cryo-Electron Microscopy Methodology: Current Aspects and Future Directions. In Trends in Biochemical Sciences (Vol. 44, Issue 10, pp. 837–848). Elsevier Ltd. https://doi.org/10.1016/j.tibs.2019.04.008 | |
dc.relation.references | Darden, T., Perera, L., Li, L., & Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 7, 55–60. http://biomednet.com/elecref/09692126007R0055 | |
dc.relation.references | Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397 | |
dc.relation.references | Dasti, A., Cid-Samper, F., Bechara, E., & Tartaglia, G. G. (2020). RNA-centric approaches to study RNA-protein interactions in vitro and in silico. In Methods (Vol. 178, pp. 11–18). Academic Press Inc. https://doi.org/10.1016/j.ymeth.2019.09.011 | |
dc.relation.references | Deloughery, A., Dengler, V., Chai, Y., & Losick, R. (2016). Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR. Molecular Microbiology, 99(2), 425–437. https://doi.org/10.1111/MMI.13240 | |
dc.relation.references | DeLoughery, A., Lalanne, J. B., Losick, R., & Li, G. W. (2018). Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 115(24), E5585–E5594. https://doi.org/10.1073/PNAS.1803283115/-/DCSUPPLEMENTAL | |
dc.relation.references | Deng, L., Sui, Y., & Zhang, J. (2019). XGBPRH: Prediction of Binding Hot Spots at Protein–RNA Interfaces Utilizing Extreme Gradient Boosting. Genes, 10(3). https://doi.org/10.3390/GENES10030242 | |
dc.relation.references | Dill, K. A., & MacCallum, J. L. (2012). The protein-folding problem, 50 years on. Science (New York, N.Y.), 338(6110), 1042–1046. https://doi.org/10.1126/SCIENCE.1219021 | |
dc.relation.references | Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (1999). A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations. | |
dc.relation.references | Dym, O., Eisenberg, D., & Yeates, T. O. (2006). Detection of errors in protein models. | |
dc.relation.references | Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang, L. P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R., & Pande, V. S. (2017). OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Computational Biology, 13(7), e1005659. https://doi.org/10.1371/JOURNAL.PCBI.1005659 | |
dc.relation.references | Escobar Perez, J. A. (2018). Identificación y caracterización de una proteína de unión al gen icaA y evaluación de su potencial participación en la formación de biofilm en Staphylococcus aureus [Instituto de Biotecnología- Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69277 | |
dc.relation.references | Escobar-Perez, J., Ospina-Garcia, K., Rozo, Z. L. C., Marquez-Ortiz, R. A., Castellanos, J. E., & Gomez, N. V. (2019). Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus Aureus. The Open Bioinformatics Journal, 12(1), 18–29. https://doi.org/10.2174/1875036201912010018 | |
dc.relation.references | Feenstra, K. A., Hess, B., & Berendsen, H. J. C. (1999). Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. Journal of Computational Chemistry, 20(8), 786–798. https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B | |
dc.relation.references | Foster, T. J. (2004). The Staphylococcus aureus “superbug.” Journal of Clinical Investigation, 114(12), 1693–1696. https://doi.org/10.1172/JCI200423825 | |
dc.relation.references | Foulston, L., Elsholz, A. K. W., DeFrancesco, A. S., & Losick, R. (2014). The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio, 5(5). https://doi.org/10.1128/MBIO.01667-14/FORMAT/EPUB | |
dc.relation.references | Frenkel, D., & Smit, B. (2001). Understanding Molecular Simulation: From Algorithms to Applications - Daan Frenkel, B. Smit - Google Libros. https://books.google.com.co/books?hl=es&lr=&id=5qTzldS9ROIC&oi=fnd&pg=PP1&dq=Understanding+molecular+simulation+:+from+algorithms+to+applications&ots=nHPKZnXcWh&sig=toMDMYMZf3sn5T3NWfdM8XaurI8#v=onepage&q=Understanding%20molecular%20simulation%20%3A%20from%20algorithms%20to%20applications&f=false | |
dc.relation.references | Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. In Expert Opinion on Drug Discovery (Vol. 10, Issue 5, pp. 449–461). Informa Healthcare. https://doi.org/10.1517/17460441.2015.1032936 | |
dc.relation.references | Gjelstad, A., Rasmussen, K. E., & Pedersen-Bjergaard, S. (2009). Electromembrane extraction of basic drugs from untreated human plasma and whole blood under physiological pH conditions. Analytical and Bioanalytical Chemistry, 393(3), 921–928. https://doi.org/10.1007/S00216-008-2344-X/TABLES/3 | |
dc.relation.references | Goujon, M., Mcwilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., & Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL-EBI. https://doi.org/10.1093/nar/gkq313 | |
dc.relation.references | Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nature Reviews. Microbiology, 9(4), 244. https://doi.org/10.1038/NRMICRO2537 | |
dc.relation.references | Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., & Hofacker, I. L. (2008). The Vienna RNA websuite. Nucleic Acids Research, 36(Web Server issue). https://doi.org/10.1093/nar/gkn188 | |
dc.relation.references | Guo, L., Wang, Y., Bi, X., Duo, K., Sun, Q., Yun, X., Zhang, Y., Fei, P., & Han, J. (2020). Antimicrobial activity and mechanism of action of the Amaranthus tricolor crude Extract against Staphylococcus aureus and potential application in cooked meat. Foods, 9(3). https://doi.org/10.3390/foods9030359 | |
dc.relation.references | Hajian-Tilaki, K. (2018). The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Statistical Methods in Medical Research, 27(8), 2374–2383. https://doi.org/10.1177/0962280216680383 | |
dc.relation.references | Hall, K. B. (2002). RNA–protein interactions. Current Opinion in Structural Biology, 12(3), 283–288. https://doi.org/10.1016/S0959-440X(02)00323-8 | |
dc.relation.references | Hamze, K., Julkowska, D., Autret, S., Hinc, K., Nagorska, K., Sekowska, A., Holland, I. B., & Séror, S. J. (2009). Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC. Microbiology, 155(2), 398–412. https://doi.org/10.1099/MIC.0.021477-0/CITE/REFWORKS | |
dc.relation.references | Hansson, T., Oostenbrink, C., & Van Gunsteren, W. F. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology, 12(2), 190–196. https://doi.org/10.1016/S0959-440X(02)00308-1 | |
dc.relation.references | Hinrichs, R., Pozhydaieva, N., Höfer, K., Graumann, P. L., & Mikrobiologie, L. S. (2021). Y-complex proteins show RNA-dependent binding events at the cell membrane and distinct single molecule dynamics. 1–20. | |
dc.relation.references | Hofacker, I. L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31(13), 3429–3431. https://doi.org/10.1093/NAR/GKG599 | |
dc.relation.references | Hollingsworth, S. A., & Dror, R. O. (2018). Molecular Dynamics Simulation for All. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/J.NEURON.2018.08.011 | |
dc.relation.references | Hollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. In Biomolecular Concepts (Vol. 1, Issues 3–4, pp. 271–283). De Gruyter Mouton. https://doi.org/10.1515/bmc.2010.022 | |
dc.relation.references | Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. In Advances and Applications in Bioinformatics and Chemistry (Vol. 8, Issue 1, pp. 37–47). Dove Medical Press Ltd. https://doi.org/10.2147/AABC.S70333 | |
dc.relation.references | Hsin, J., Arkhipov, A., Yin, Y., Stone, J. E., & Schulten, K. (2008). Using VMD - An Introductory Tutorial. Current Protocols in Bioinformatics / Editoral Board, Andreas D. Baxevanis ... [et Al.], CHAPTER(SUPPL. 24), Unit. https://doi.org/10.1002/0471250953.BI0507S24 | |
dc.relation.references | Huang, M. J., & Mikhailov, A. (2017). Nano-Swimmers in Lipid-Bilayer Membranes. Modeling of Microscale Transport in Biological Processes, 207–219. https://doi.org/10.1016/B978-0-12-804595-4.00008-0 | |
dc.relation.references | Ilari, A., Savino, C., Fanelli, R., Sapienza, L., & Aldo, P. (2020). Protein structure determination by X-ray crystallography Running head: Protein X-ray structure determination. | |
dc.relation.references | Izadi, S., Anandakrishnan, R., & Onufriev, A. V. (2014). Building water models: A different approach. Journal of Physical Chemistry Letters, 5(21), 3863–3871. https://doi.org/10.1021/JZ501780A/SUPPL_FILE/JZ501780A_SI_001.PDF | |
dc.relation.references | Jeong, E., Chung, I.-F., & Miyano, S. (2004). A Neural Network Method for Identification of RNA-Interacting Residues in Protein. | |
dc.relation.references | Jin, S., Li, L., Xu, Z., & Zhao, Y. (2020). A random batch Ewald method for particle systems with Coulomb interactions. http://arxiv.org/abs/2010.01559 | |
dc.relation.references | Jones, S., Daley, D. T. A., Luscombe, N. M., Berman, H. M., & Thornton, J. M. (2001). Protein-RNA interactions: a structural analysis. In Nucleic Acids Research (Vol. 29, Issue 4). www.biochem.ucl.ac.uk/bsm/DNA/server | |
dc.relation.references | Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869 | |
dc.relation.references | Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2 | |
dc.relation.references | Kalibaeva, G., Ferrario, M., & Ciccotti, G. (2003). Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Molecular Physics, 101(6), 765–778. https://doi.org/10.1080/0026897021000044025 | |
dc.relation.references | Karplus, M. (2003). Molecular dynamics of biological macromolecules: A brief history and perspective. Biopolymers, 68(3), 350–358. https://doi.org/10.1002/BIP.10266 | |
dc.relation.references | Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology 2002 9:9, 9(9), 646–652. https://doi.org/10.1038/nsb0902-646 | |
dc.relation.references | Kaus, J. W., Pierce, L. T., Walker, R. C., & McCammon, J. A. (2013). Improving the efficiency of free energy calculations in the amber molecular dynamics package. Journal of Chemical Theory and Computation, 9(9), 4131–4139. https://doi.org/10.1021/ct400340s | |
dc.relation.references | Kearns, D. B., Chu, F., Branda, S. S., Kolter, R., & Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Molecular Microbiology, 55(3), 739–749. https://doi.org/10.1111/J.1365-2958.2004.04440.X | |
dc.relation.references | Khatib, R., Johnson, L. B., Fakih, M. G., Riederer, K., Khosrovaneh, A., Tabriz, M. S., Sharma, M., & Saeed, S. (2009). Persistence in Staphylococcus aureus bacteremia: Incidence, characteristics of patients and outcome. Https://Doi.Org/10.1080/00365540500372846, 38(1), 7–14. https://doi.org/10.1080/00365540500372846 | |
dc.relation.references | Khemici, V., Prados, J., Linder, P., & Redder, P. (2015). Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation. PLOS Genetics, 11(10), e1005577. https://doi.org/10.1371/JOURNAL.PGEN.1005577 | |
dc.relation.references | Khor, B. Y., Tye, G. J., Lim, T. S., & Choong, Y. S. (2015). General overview on structure prediction of twilight-zone proteins. Theoretical Biology and Medical Modelling, 12(1). https://doi.org/10.1186/s12976-015-0014-1 | |
dc.relation.references | Kluytmans, J., Van Belkum, A., & Verbrugh, H. (1997). Nasal Carriage of Staphylococcus aureus: Epidemiology, Underlying Mechanisms, and Associated Risks (Vol. 10, Issue 3). | |
dc.relation.references | Kovács, Á. T. (2019). Bacillus subtilis. Trends in Microbiology, 27(8), 724–725. https://doi.org/10.1016/J.TIM.2019.03.008 | |
dc.relation.references | Krüger, D. M., Neubacher, S., & Grossmann, T. N. (2018). Protein-RNA interactions: structural characteristics and hotspot amino acids. https://doi.org/10.1261/rna | |
dc.relation.references | L. Jorgensen, W., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001 | |
dc.relation.references | Ladomery, M., & Sommerville, J. (1995). A role for Y-box proteins in cell proliferation. BioEssays, 17(1), 9–11. https://doi.org/10.1002/BIES.950170104 | |
dc.relation.references | Lamoureux, G., Harder, E., Vorobyov, I. V., Roux, B., & MacKerell, A. D. (2006). A polarizable model of water for molecular dynamics simulations of biomolecules. Chemical Physics Letters, 418(1–3), 245–249. https://doi.org/10.1016/J.CPLETT.2005.10.135 | |
dc.relation.references | Laskowski, R., Rullmann, A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR*. In Journal of Biomolecular NMR (Vol. 8). http://www-nmr.chem.ruu.nl/users/rull/ | |
dc.relation.references | Lee, M. C., & Duan, Y. (2004). Distinguish protein decoys by Using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins: Structure, Function, and Bioinformatics, 55(3), 620–634. https://doi.org/10.1002/PROT.10470 | |
dc.relation.references | Lehnik-Habrink, M., Newman, J., Rothe, F. M., Solovyova, A. S., Rodrigues, C., Herzberg, C., Commichau, F. M., Lewis, R. J., & Stülke, J. (2011). RNase Y in Bacillus subtilis: a Natively Disordered Protein That Is the Functional Equivalent of RNase E from Escherichia coli. Journal of Bacteriology, 193(19), 5431. https://doi.org/10.1128/JB.05500-11 | |
dc.relation.references | Levitt, M., & Huber, R. (1983). Molecular dynamics of native protein: II. Analysis and nature of motion. Journal of Molecular Biology, 168(3), 621–657. https://doi.org/10.1016/S0022-2836(83)80306-4 | |
dc.relation.references | Lewis, B. A., Walia, R. R., Terribilini, M., Ferguson, J., Zheng, C., Honavar, V., & Dobbs, D. (2011). PRIDB: a protein–RNA interface database. Nucleic Acids Research, 39(Database issue), D277. https://doi.org/10.1093/NAR/GKQ1108 | |
dc.relation.references | Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y. M., Buso, N., & Lopez, R. (2015). The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Research, 43(W1), W580–W584. https://doi.org/10.1093/NAR/GKV279 | |
dc.relation.references | Li, Y., Lyu, J., Wu, Y., Liu, Y., & Huang, G. (2022). PRIP: A Protein-RNA Interface Predictor Based on Semantics of Sequences. Life, 12(2). https://doi.org/10.3390/LIFE12020307 | |
dc.relation.references | Liu, Z. P., Wu, L. Y., Wang, Y., Zhang, X. S., & Chen, L. (2010). Prediction of protein–RNA binding sites by a random forest method with combined features. Bioinformatics, 26(13), 1616–1622. https://doi.org/10.1093/BIOINFORMATICS/BTQ253 | |
dc.relation.references | Lozano-Aponte, J., & Scior, T. (2014). What do you know about... Molecular Dynamics? Revista Mexicana de Ciencias Farmacéuticas. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952014000100010 | |
dc.relation.references | Lunin, V. Y., Urzhumtsev, A., Bockmayr, A., Fokin, A., Urzhumtsev, A., Afonine, P., Lunin, V. Y., Harding, M., Turkenburg, M., Ballard, C., & Howard-Eales, M. (2002). Theory and Techniques 12. Binary Integer Programming and its Use for Envelope Determination Bulk Solvent Correction for Yet Unsolved Structures Search of the Optimal Strategy for Refinement of Atomic Models Metal Coordination Groups in Proteins: Some Comments on Geometry, Constitution and B-values. http://www.iucr.org | |
dc.relation.references | Macke, T. J., Ecker, D. J., Gutell, R. R., Gautheret, D., Case, D. A., & Sampath, R. (2001). RNAMotif, an RNA secondary structure definition and search algorithm. In Nucleic Acids Research (Vol. 29, Issue 22). http://bioinfo.math.rpi.edu/~zukerm/rna/energy/. | |
dc.relation.references | Mariani, V., Biasini, M., Barbato, A., & Schwede, T. (2013). IDDT: A local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics, 29(21), 2722–2728. https://doi.org/10.1093/bioinformatics/btt473 | |
dc.relation.references | Marincola, G., & Wolz, C. (2017). Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Research, 45(10), 5980. https://doi.org/10.1093/NAR/GKX296 | |
dc.relation.references | Markham, N. R., & Zuker, M. (2008). UNAFold: Software for nucleic acid folding and hybridization. Methods in Molecular Biology, 453, 3–31. https://doi.org/10.1007/978-1-60327-429-6_1/COVER | |
dc.relation.references | Maticzka, D., Lange, S. J., Costa, F., & Backofen, R. (2014). GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biology, 15(1), R17. https://doi.org/10.1186/GB-2014-15-1-R17 | |
dc.relation.references | Mcdonald, I. R. (1972). NpT-ensemble Monte Carlo calculations for binary liquid mixtures. In MOLECULAR PHYSICS (Vol. 23, Issue 1). | |
dc.relation.references | McDowell, S. E., Špačková, N., Šponer, J., & Walter, N. G. (2007). Molecular dynamics simulations of RNA: An in silico single molecule approach. Biopolymers, 85(2), 169–184. https://doi.org/10.1002/BIP.20620 | |
dc.relation.references | Medina, J. S., Prosmiti, R., Villarreal, P., Delgado-Barrio, G., Winter, G., González, B., Alemán, J. V., & Collado, C. (2011). Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity. Chemical Physics, 388(1–3), 9–18. https://doi.org/10.1016/J.CHEMPHYS.2011.07.001 | |
dc.relation.references | Mensa, J., Soriano, A., Barberán José, Montejo, M., Salavert, M., Alvarez-Rocha, L., Maseda, E., Moreno, A., Pasquau, J., Gómez, J., Parra, J., Candel, J., Azanza José, García José Elías, Marco, F., Soy, D., Gray, S., Fortún, J., Aristides de Alárcon, C., & Picazo, J. (2018). Guía de tratamiento antimicrobiano de la infección por Staphylococcus aureus. | |
dc.relation.references | Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/s41592-022-01488-1 | |
dc.relation.references | Mlýnský, V., Kührová, P., Kühr, T., Otyepka, M., Bussi, G., Banáš, P., & Šponer, J. (2020). Fine-tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. https://doi.org/10.1101/2020.03.08.982538 | |
dc.relation.references | Monticelli, L., Kandasamy, S. K., Periole, X., Larson, R. G., Tieleman, D. P., & Marrink, S. J. (2008). The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation, 4(5), 819–834. https://doi.org/10.1021/CT700324X | |
dc.relation.references | Monticelli, L., & Tieleman, D. P. (2013). Force Fields for Classical Molecular Dynamics (pp. 197–213). https://doi.org/10.1007/978-1-62703-017-5_8 | |
dc.relation.references | Moore, P. B., & Steitz, T. A. (2002). The involvement of RNA in ribosome function. Nature 2002 418:6894, 418(6894), 229–235. https://doi.org/10.1038/418229a | |
dc.relation.references | Morra, G., & Colombo, G. (2008). Relationship between energy distribution and fold stability: Insights from molecular dynamics simulations of native and mutant proteins. Proteins: Structure, Function and Genetics, 72(2), 660–672. https://doi.org/10.1002/PROT.21963 | |
dc.relation.references | Morris, A. L., Macarthur, M. W., Hutchinson, E. G., & Thornton’, J. M. (1992). Stereochemical Quality of Protein Structure Coordinates. In PROTEINS: Structure, Function, and Genetics (Vol. 12). | |
dc.relation.references | Murray, P. R., Rosenthal, K. S., & Michael A. Pfaller. (1967). Medical Microbiology Ninth Edition. Angewandte Chemie International Edition, 6(11), 951–952., 5–24. | |
dc.relation.references | Narumi, T., Susukita, R., Ebisuzaki, T., McNiven, G., & Elmegreen, B. (1999). Molecular Dynamics Machine: Special-Purpose Computer for Molecular Dynamics Simulations. Molecular Simulation, 21(5–6), 401–415. https://doi.org/10.1080/08927029908022078 | |
dc.relation.references | Nose, S. (1991). Constant Temperature Molecular Dynamics Methods. Progress of Theoretical Physics Supplement, 103. https://doi.org/10.1143/PTPS.103.1/1894286 | |
dc.relation.references | Nurisso, A., Daina, A., & Walker, R. C. (2012). A practical introduction to molecular dynamics simulations: Applications to homology modeling. Methods in Molecular Biology, 857, 137–173. https://doi.org/10.1007/978-1-61779-588-6_6 | |
dc.relation.references | Nutt, D. R., & Smith, J. C. (2007). Molecular dynamics simulations of proteins: Can the explicit water model be varied? Journal of Chemical Theory and Computation, 3(4), 1550–1560. https://doi.org/10.1021/ct700053u | |
dc.relation.references | Ohniwa, R. L., Ushijima, Y., Saito, S., & Morikawa, K. (2011). Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. PLOS ONE, 6(4), e19172. https://doi.org/10.1371/JOURNAL.PONE.0019172 | |
dc.relation.references | Pavan, M., Bassani, D., Sturlese, M., & Moro, S. (2022). Investigating RNA-protein recognition mechanisms through supervised molecular dynamics (SuMD) simulations. NAR Genomics and Bioinformatics, 4(4). https://doi.org/10.1093/nargab/lqac088 | |
dc.relation.references | Pagliuso, A., Tham, T. N., Allemand, E., Robertin, S., Dupuy, B., Bertrand, Q., Bécavin, C., Koutero, M., Najburg, V., Nahori, M. A., Tangy, F., Stavru, F., Bessonov, S., Dessen, A., Muchardt, C., Lebreton, A., Komarova, A. V., & Cossart, P. (2019). An RNA-Binding Protein Secreted by a Bacterial Pathogen Modulates RIG-I Signaling. Cell Host & Microbe, 26(6), 823-835.e11. https://doi.org/10.1016/J.CHOM.2019.10.004 | |
dc.relation.references | Pasachova Garzón, J., Ramirez Martinez, S., & Munoz Molina, L. (2019). Staphylococcus aureus: generalidades, mecanismos de patogenicidad y colonización celular. | |
dc.relation.references | Patiyal, S., Dhall, A., Bajaj, K., Sahu, H., & Raghava, G. P. S. (2023). Prediction of RNA-interacting residues in a protein using CNN and evolutionary profile. Briefings in Bioinformatics, 24(1). https://doi.org/10.1093/bib/bbac538 | |
dc.relation.references | Patodia, S. (2014). Molecular dynamics simulation of protein Physical Chemistry & Biophysics. J Phys Chem Biophys, 4, 6. https://doi.org/10.4172/2161-0398.1000166 | |
dc.relation.references | Perez, D., Uberuaga, B. P., Shim, Y., Amar, J. G., & Voter, A. F. (2009). Chapter 4 Accelerated Molecular Dynamics Methods: Introduction and Recent Developments. In Annual Reports in Computational Chemistry (Vol. 5, pp. 79–98). https://doi.org/10.1016/S1574-1400(09)00504-0 | |
dc.relation.references | Perez, R. K., Gordon, M. G., Subramaniam, M., Kim, M. C., Hartoularos, G. C., Targ, S., Sun, Y., Ogorodnikov, A., Bueno, R., Lu, A., Thompson, M., Rappoport, N., Dahl, A., Lanata, C. M., Matloubian, M., Maliskova, L., Kwek, S. S., Li, T., Slyper, M., … Ye, C. J. (2022). Single-cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus. Science (New York, N.Y.), 376(6589), eabf1970. https://doi.org/10.1126/SCIENCE.ABF1970 | |
dc.relation.references | Periasamy, S., Joo, H. S., Duong, A. C., Bach, T. H. L., Tan, V. Y., Chatterjee, S. S., Cheung, G. Y. C., & Otto, M. (2012). How Staphylococcus aureus biofilms develop their characteristic structure. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1281–1286. https://doi.org/10.1073/PNAS.1115006109 | |
dc.relation.references | Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/JCC.20289 | |
dc.relation.references | Piatkowski, P. , Kasprzak, J. M. , Kumar, D. , Magnus, M. , Chojnowski, G. , & Bujnicki, J. M. (2016). RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS. Methods in molecular biology. 217–235. https://doi.org/https://doi.org/10.1007/978-1-4939-6433-8_14 | |
dc.relation.references | Plimpton, S. (1994). SANDIAREPORT A New Parallel Method for Molecular Dynamics Simulation of Macromoiecular Systems SF2gOOQ(8-8] ) q. | |
dc.relation.references | Pinamonti, G., Bottaro, S., Micheletti, C., & Bussi, G. (2015). Elastic network models for RNA: a comparative assessment with molecular dynamics and SHAPE experiments. Nucleic Acids Research, 43(15), 7260. https://doi.org/10.1093/NAR/GKV708 | |
dc.relation.references | Poier, P. P., Lagardère, L., Piquemal, J.-P., & Jensen, F. (2019). Molecular Dynamics using Non-variational Polarizable Force Fields: Theory, Periodic Boundary Conditions Implementation and Application to the Bond Capacity Model. | |
dc.relation.references | Pokorná, P., Kruse, H., Krepl, M., & Šponer, J. (2018). QM/MM Calculations on Protein-RNA Complexes: Understanding Limitations of Classical MD Simulations and Search for Reliable Cost-Effective QM Methods. Journal of Chemical Theory and Computation, 14(10), 5419–5433. https://doi.org/10.1021/ACS.JCTC.8B00670 | |
dc.relation.references | Popenda, M., Szachniuk, M., Antczak, M., Purzycka, K. J., Lukasiak, P., Bartol, N., Blazewicz, J., & Adamiak, R. W. (2012). Automated 3D structure composition for large RNAs. Nucleic Acids Research, 40(14). https://doi.org/10.1093/nar/gks339 | |
dc.relation.references | Pyle, A. M. (1993). Ribozymes: a distinct class of metalloenzymes. Science (New York, N.Y.), 261(5122), 709–714. https://doi.org/10.1126/SCIENCE.7688142 | |
dc.relation.references | Ramanathan, M., Porter, D. F., & Khavari, P. A. (2019). Methods to study RNA–protein interactions. Nature Methods 2019 16:3, 16(3), 225–234. https://doi.org/10.1038/s41592-019-0330-1 | |
dc.relation.references | Redmill, P. S., Capps, S. L., Cummings, P. T., & McCabe, C. (2009). A molecular dynamics study of the Gibbs free energy of solvation of fullerene particles in octanol and water. Carbon, 47(12), 2865–2874. https://doi.org/10.1016/j.carbon.2009.06.040 | |
dc.relation.references | Ricci, C. G., De Andrade, A. S. C., Mottin, M., & Netz, P. A. (2010). Molecular dynamics of DNA: Comparison of force fields and terminal nucleotide definitions. Journal of Physical Chemistry B, 114(30), 9882–9893. https://doi.org/10.1021/jp1035663 | |
dc.relation.references | Robert L. Buchanan, & Myron Solberg. (1972). INTERACTION_OF_SODIUM_NITRATE_OXYGEN_AND. | |
dc.relation.references | Rocchetti, T. T., Martins, K. B., Martins, P. Y. F., Oliveira, R. A. de, Mondelli, A. L., Fortaleza, C. M. C. B., & Cunha, M. de L. R. de S. da. (2018). Detection of the mecA gene and identification of Staphylococcus directly from blood culture bottles by multiplex polymerase chain reaction. Brazilian Journal of Infectious Diseases, 22(2), 99–105. https://doi.org/10.1016/j.bjid.2018.02.006 | |
dc.relation.references | Roman Laskowski, B. A., Macarthur, M. W., & Thornton, J. M. (1983). Computer Programs PROCHECK: a program to check the stereochemicai quality of protein structures. In Phys. Status Solidi B (Vol. 13). | |
dc.relation.references | Romby, P., & Charpentier, E. (2010). An overview of RNAs with regulatory functions in gram-positive bacteria. In Cellular and Molecular Life Sciences (Vol. 67, Issue 2, pp. 217–237). https://doi.org/10.1007/s00018-009-0162-8 | |
dc.relation.references | Rosales-Pelaez, P., Sanchez-Burgos, I., Valeriani, C., Vega, C., & Sanz, E. (2020). Seeding Approach to nucleation in the NVT ensemble: the case of bubble cavitation in overstretched Lennard Jones fluids. https://doi.org/10.1103/PhysRevE.101.022611 | |
dc.relation.references | Rowlinson, M. C., LeBourgeois, P., Ward, K., Song, Y., Finegold, S. M., & Bruckner, D. A. (2006). Isolation of a Strictly Anaerobic Strain of Staphylococcus epidermidis. Journal of Clinical Microbiology, 44(3), 857. https://doi.org/10.1128/JCM.44.3.857-860.2006 | |
dc.relation.references | Salo-Ahen, O. M. H., Alanko, I., Bhadane, R., Alexandre, A. M., Honorato, R. V., Hossain, S., Juffer, A. H., Kabedev, A., Lahtela-Kakkonen, M., Larsen, A. S., Lescrinier, E., Marimuthu, P., Mirza, M. U., Mustafa, G., Nunes-Alves, A., Pantsar, T., Saadabadi, A., Singaravelu, K., & Vanmeert, M. (2021). Molecular dynamics simulations in drug discovery and pharmaceutical development. In Processes (Vol. 9, Issue 1, pp. 1–63). MDPI AG. https://doi.org/10.3390/pr9010071 | |
dc.relation.references | Sarzynska, J., Popenda, M., Antczak, M., & Szachniuk, M. (2023). RNA tertiary structure prediction using RNAComposer in CASP15. Proteins: Structure, Function and Bioinformatics, 91(12), 1790–1799. https://doi.org/10.1002/prot.26578 | |
dc.relation.references | Sasse, A., Laverty, K. U., Hughes, T. R., & Morris, Q. D. (2018). Motif models for RNA-binding proteins. In Current Opinion in Structural Biology (Vol. 53, pp. 115–123). Elsevier Ltd. https://doi.org/10.1016/j.sbi.2018.08.001 | |
dc.relation.references | Steffen, P., Voß, B., Rehmsmeier, M., Reeder, J., & Giegerich, R. (2006). RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics, 22(4), 500–503. https://doi.org/10.1093/BIOINFORMATICS/BTK010 | |
dc.relation.references | Steinbach, P. J., & Brooks, B. R. (1994). New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation STEINBACH AND BROOKS. In Journal of Computational Chemistry (Vol. 15, Issue 7). | |
dc.relation.references | Stillinger, F. H., & Rahman, A. (2003). Improved simulation of liquid water by molecular dynamics. The Journal of Chemical Physics, 60(4), 1545. https://doi.org/10.1063/1.1681229 | |
dc.relation.references | Sugiura, R., Satoh, R., Ishiwata, S., Umeda, N., & Kita, A. (2011). Role of RNA-Binding Proteins in MAPK Signal Transduction Pathway. Journal of Signal Transduction, 2011, 1–8. https://doi.org/10.1155/2011/109746 | |
dc.relation.references | Suzuki, M., Gerstein, M., & Yagi, N. (1994). Stereochemical basis of DNA recognition by Zn fingers. In Nucleic Acids Research (Vol. 22, Issue 16). http://nar.oxfordjournals.org/ | |
dc.relation.references | Szachniuk, M., Sarzyńska, J., & Blazewicz, J. (2013). Turning data into folds using RNAComposer. AIP Conference Proceedings, 1559, 353–354. https://doi.org/10.1063/1.4825029 | |
dc.relation.references | Tang, S., Li, J., Huang, G., & Yan, L. (2021). Predicting Protein Surface Property with its Surface Hydrophobicity. Protein & Peptide Letters, 28(8), 938–944. https://doi.org/10.2174/0929866528666210222160603 | |
dc.relation.references | Tanner, A. W., Carabetta, V. J., Martinie, R. J., Mashruwala, A. A., Boyd, J. M., Krebs, C., & Dubnau, D. (2017). The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S]2+ clusters and may respond to redox changes. Molecular Microbiology, 104(5), 837. https://doi.org/10.1111/MMI.13667 | |
dc.relation.references | Tobi, D., & Bahar, I. (2005). Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 18908–18913. https://doi.org/10.1073/PNAS.0507603102 | |
dc.relation.references | Torrisi, M., Pollastri, G., & Le, Q. (2020). Deep learning methods in protein structure prediction. Computational and Structural Biotechnology Journal, 18, 1301–1310. https://doi.org/10.1016/J.CSBJ.2019.12.011 | |
dc.relation.references | Tortosa, P., Albano, M., & Dubnau, D. (2000). Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Molecular Microbiology, 35(5), 1110–1119. https://doi.org/10.1046/J.1365-2958.2000.01779.X | |
dc.relation.references | Toukmaji, A. Y., & Board, J. A. (1996). Ewald summation techniques in perspective: a survey. In Computer Physics Communications (Vol. 95). | |
dc.relation.references | Trendel, J., Schwarzl, T., Horos, R., Prakash, A., Bateman, A., Hentze, M. W., & Krijgsveld, J. (2019). The Human RNA-Binding Proteome and Its Dynamics during Translational Arrest. Cell, 176(1–2), 391-403.e19. https://doi.org/10.1016/J.CELL.2018.11.004/ATTACHMENT/E3562894-90AA-4BA4-96A4-2B801FCD0CF2/MMC6.PDF | |
dc.relation.references | Valero, A., Pérez-Rodríguez, F., Carrasco, E., Fuentes-Alventosa, J. M., García-Gimeno, R. M., & Zurera, G. (2009). Modelling the growth boundaries of Staphylococcus aureus: Effect of temperature, pH and water activity. International Journal of Food Microbiology, 133(1–2), 186–194. https://doi.org/10.1016/J.IJFOODMICRO.2009.05.023 | |
dc.relation.references | Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2021). NAR Breakthrough Article AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50. https://doi.org/10.1093/nar/gkab1061 | |
dc.relation.references | Vlachakis, D., Bencurova, E., Papangelopoulos, N., & Kossida, S. (2014). Current State-of-the-Art Molecular Dynamics Methods and Applications. Advances in Protein Chemistry and Structural Biology, 94, 269–313. https://doi.org/10.1016/B978-0-12-800168-4.00007-X | |
dc.relation.references | Wang, L., Huang, C., Yang, M. Q., & Yang, J. Y. (2010). BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Systems Biology, 4(Suppl 1), S3. https://doi.org/10.1186/1752-0509-4-S1-S3 | |
dc.relation.references | Wang, L., You, Z. H., Huang, D. S., & Zhou, F. (2020). Combining High Speed ELM Learning with a Deep Convolutional Neural Network Feature Encoding for Predicting Protein-RNA Interactions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(3), 972–980. https://doi.org/10.1109/TCBB.2018.2874267 | |
dc.relation.references | Wang, W., Donini, O., Reyes, C. M., & Kollman, P. A. (2001). BIOMOLECULAR SIMULATIONS: Recent Developments in Force Fields, Simulations of Enzyme Catalysis, Protein-Ligand, Protein-Protein, and Protein-Nucleic Acid Noncovalent Interactions. www.annualreviews.org | |
dc.relation.references | Warren L. DeLano. (2004). PyMOL User’s Guide | |
dc.relation.references | Wheeler, E. C., Van Nostrand, E. L., & Yeo, G. W. (2018). Advances and challenges in the detection of transcriptome-wide protein–RNA interactions. Wiley Interdisciplinary Reviews: RNA, 9(1). https://doi.org/10.1002/wrna.1436 | |
dc.relation.references | Williams, S. G., & Lovell, S. C. (2009). The Effect of Sequence Evolution on Protein Structural Divergence. Molecular Biology and Evolution, 26(5), 1055–1065. https://doi.org/10.1093/MOLBEV/MSP020 | |
dc.relation.references | Windbichler, N., & Schroeder, R. (2006). Isolation of specific RNA-binding proteins using the streptomycin-binding RNA aptamer. Nature Protocols 2006 1:2, 1(2), 637–640. https://doi.org/10.1038/nprot.2006.95 | |
dc.relation.references | Wlodawer, A. (2017). Stereochemistry and validation of macromolecular structures. In Methods in Molecular Biology (Vol. 1607, pp. 595–610). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7000-1_24 | |
dc.relation.references | World Health Organization. (2022). Antimicrobial Resistance Multi-Partner Trust Fund annual report 2022. | |
dc.relation.references | Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S. Y. (2017). HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Research, 45(W1), W365–W373. https://doi.org/10.1093/NAR/GKX407 | |
dc.relation.references | Yang, Z., Zeng, X., Zhao, Y., & Chen, R. (2023). AlphaFold2 and its applications in the fields of biology and medicine. In Signal Transduction and Targeted Therapy (Vol. 8, Issue 1). Springer Nature. https://doi.org/10.1038/s41392-023-01381-z | |
dc.relation.references | Yao, Z., Weinberg, Z., & Ruzzo, W. L. (2006). CMfinder - A covariance model based RNA motif finding algorithm. Bioinformatics, 22(4), 445–452. https://doi.org/10.1093/bioinformatics/btk008 | |
dc.relation.references | Yildirim, I., Stern, H. A., Kennedy, S. D., Tubbs, J. D., & Turner, D. H. (2010). Reparameterization of RNA χ torsion parameters for the AMBER force field and comparison to NMR spectra for cytidine and uridine. Journal of Chemical Theory and Computation, 6(5), 1520–1531. https://doi.org/10.1021/ct900604a | |
dc.relation.references | Yildirim, I., Stern, H. A., Tubbs, J. D., Kennedy, S. D., & Turner, D. H. (2011). Benchmarking AMBER force fields for RNA: Comparisons to NMR spectra for single-stranded r(GACC) are improved by revised Χ torsions. Journal of Physical Chemistry B, 115(29), 9261–9270. https://doi.org/10.1021/jp2016006 | |
dc.relation.references | Yusuf, D., Butland, S. L., Swanson, M. I., Bolotin, E., Ticoll, A., Cheung, W. A., Zhang, X. Y. C., Dickman, C. T. D., Fulton, D. L., Lim, J. S., Schnabl, J. M., Ramos, O. H. P., Vasseur-Cognet, M., de Leeuw, C. N., Simpson, E. M., Ryffel, G. U., Lam, E. W. F., Kist, R., Wilson, M. S. C., … Hevner, R. F. (2012). The transcription factor encyclopedia. Genome Biology, 13(3). https://doi.org/10.1186/gb-2012-13-3-r24 | |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.accessrights | rl.org/coar/access_right/c_14cbhttp://pu | |
dc.rights.local | Acceso cerrado | spa |
dc.subject | Staphylococcus aureus | |
dc.subject | YlbF | |
dc.subject | Dinámica molecular | |
dc.subject | in sílico | |
dc.subject | Simulación | |
dc.subject | Energías intermoleculares | |
dc.subject.ddc | 610.28 | |
dc.subject.keywords | Staphylococcus aureus | |
dc.subject.keywords | YlbF | |
dc.subject.keywords | Molecular dynamics | |
dc.subject.keywords | in silico | |
dc.subject.keywords | Simulation | |
dc.subject.keywords | Intermolecular Energies | |
dc.title | Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN | |
dc.title.translated | Development of an in silico methodological protocol to understand the possible interactions between the Staphylococcus aureus YlbF protein with RNA | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 3.92 MB
- Formato:
- Adobe Portable Document Format