Machine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024)
dc.contributor.advisor | Guevara Pulido, James Oswaldo | |
dc.contributor.author | Tellez Ruíz, Dania Geraldine | |
dc.date.accessioned | 2025-05-21T13:44:26Z | |
dc.date.available | 2025-05-21T13:44:26Z | |
dc.date.issued | 2025-05 | |
dc.description.abstract | El descubrimiento de fármacos ha sido durante mucho tiempo un proceso costoso y lento, pero el Machine Learning (ML) ha revolucionado esta área al permitir análisis masivos de datos y predicciones precisas de propiedades farmacológicas. Este estudio analiza el impacto del ML en el diseño racional de fármacos desde el año 2000 hasta el 2024, evaluando sus aplicaciones y desafíos. Se realizó una búsqueda sistemática en bases de datos especializadas para identificar publicaciones relevantes en Relaciones Cuantitativas Estructura-Actividad (QSAR) y diseño de fármacos asistido por computadora. Los resultados muestran que el ML ha mejorado la predicción de actividad biológica, toxicidad y farmacocinética, con avances significativos en redes neuronales profundas y modelos generativos. Sin embargo, persisten retos en la interpretabilidad de los modelos, la calidad de los datos y la validación experimental. A pesar de estos desafíos, el ML sigue consolidándose como una herramienta esencial en la química farmacéutica, acelerando el descubrimiento de nuevos fármacos y optimizando el desarrollo de medicamentos. Como estudiante de Química Farmacéutica, vi cómo el ML optimiza la selección de blancos terapéuticos y propiedades ADMET, destacando la importancia de datos de calidad. A pesar de los desafíos, el ML es clave en el desarrollo de medicamentos más seguros y eficaces. | |
dc.description.abstractenglish | Drug discovery has long been a costly and time-consuming process, but Machine Learning (ML) has revolutionized this area by enabling massive data analysis and accurate predictions of pharmacological properties. This study analyzes the impact of ML on rational drug design from 2000 to 2024, assessing its applications and challenges. A systematic search of specialized databases was conducted to identify relevant publications in Quantitative Structure-Activity Relationships (QSAR) and computer-aided drug design. The results show that ML has improved the prediction of biological activity, toxicity and pharmacokinetics, with significant advances in deep neural networks and generative models. However, challenges remain in model interpretability, data quality, and experimental validation. Despite these challenges, ML continues to establish itself as an essential tool in pharmaceutical chemistry, accelerating new drug discovery and optimizing drug development. As a Pharmaceutical Chemistry student, I saw how ML optimizes the selection of therapeutic targets and ADMET properties, highlighting the importance of quality data. Despite the challenges, ML is key in the development of safer and more effective drugs. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreelevel | Químico Farmacéutico | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/14417 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Química Farmacéutica | spa |
dc.relation.references | 1. Walters, W. P., & Murcko, M. A. (2002). Prediction of ‘drug-likeness’. Advanced Drug Delivery Reviews, 54(3), 255–271. https://doi.org/10.1016/s0169-409x(02)00003-0 | |
dc.relation.references | 2. Lei, T., Sun, H., Kang, Y., Zhu, F., Liu, H., Zhou, W., Wang, Z., Li, D., Li, Y., & Hou, T. (2017). ADMET evaluation in drug discovery. 18. Reliable prediction of chemical-induced urinary tract toxicity by boosting machine learning approaches. Molecular Pharmaceutics, 14(11), 3935–3953. https://doi.org/10.1021/acs.molpharmaceut.7b00631 | |
dc.relation.references | 3. Xia, F., Shukla, M., Brettin, T., Garcia-Cardona, C., Cohn, J., Allen, J. E., Maslov, S., Holbeck, S. L., Doroshow, J. H., Evrard, Y. A., Stahlberg, E. A., & Stevens, R. L. (2018). Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinformatics, 19(S18). https://doi.org/10.1186/s12859-018-2509-3 | |
dc.relation.references | 4. Levatić, J., Pavić, K., Perković, I., Uzelac, L., Ester, K., Kralj, M., Kaiser, M., Rottmann, M., Supek, F., & Zorc, B. (2018). Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity. European Journal of Medicinal Chemistry, 146, 651–667. https://doi.org/10.1016/j.ejmech.2018.01.062 | |
dc.relation.references | 5. Watanabe, R., Esaki, T., Kawashima, H., Natsume-Kitatani, Y., Nagao, C., Ohashi, R., & Mizuguchi, K. (2018). Predicting fraction unbound in human plasma from chemical structure: Improved accuracy in the low value ranges. Molecular Pharmaceutics, 15(11), 5302–5311. https://doi.org/10.1021/acs.molpharmaceut.8b00785 | |
dc.relation.references | 6. He, S., Ye, T., Wang, R., Zhang, C., Zhang, X., Sun, G., & Sun, X. (2019). An in silico model for predicting drug-induced hepatotoxicity. International Journal of Molecular Sciences, 20(8), 1897. doi:10.3390/ijms20081897 | |
dc.relation.references | 7. Han, R., Xiong, H., Ye, Z., Yang, Y., Huang, T., Jing, Q., … Ouyang, D. (2019). Predicting physical stability of solid dispersionsby machine learning techniques. Journal of Controlled Release: Official Journal of the Controlled Release Society, 311–312, 16–25. doi:10.1016/j.jconrel.2019.08.030 | |
dc.relation.references | 8. Ayed, M., Lim, H., & Xie, L. (2019). Biological representation of chemicals using latent target interaction profile. BMC Bioinformatics, 20(S24). https://doi.org/10.1186/s12859-019-3241-3 | |
dc.relation.references | 9. Lee, M., Kim, H., Joe, H., & Kim, H.-G. (2019). Multi-channel PINN: investigating scalable and transferable neural networks for drug discovery. Journal of Cheminformatics, 11(1). https://doi.org/10.1186/s13321-019-0368-1 | |
dc.relation.references | 10. Li, T., Tong, W., Roberts, R., Liu, Z., & Thakkar, S. (2020). Deep learning on high-throughput transcriptomics to predict drug-induced liver injury. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.562677 | |
dc.relation.references | 11. Jiang, D., Lei, T., Wang, Z., Shen, C., Cao, D., & Hou, T. (2020). ADMET evaluation in drug discovery. 20. Prediction of breast cancer resistance protein inhibition through machine learning. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00421-y | |
dc.relation.references | 12. Ancuceanu, R., Hovanet, M. V., Anghel, A. I., Furtunescu, F., Neagu, M., Constantin, C., & Dinu, M. (2020). Computational models using multiple machine learning algorithms for predicting drug hepatotoxicity with the DILIrank dataset. International Journal of Molecular Sciences, 21(6), 2114. https://doi.org/10.3390/ijms21062114 | |
dc.relation.references | 13. Sturm, N., Mayr, A., Le Van, T., Chupakhin, V., Ceulemans, H., Wegner, J., Golib-Dzib, J.-F., Jeliazkova, N., Vandriessche, Y., Böhm, S., Cima, V., Martinovic, J., Greene, N., Vander Aa, T., Ashby, T. J., Hochreiter, S., Engkvist, O., Klambauer, G., & Chen, H. (2020). Industry-scale application and evaluation of deep learning for drug target prediction. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00428-5 | |
dc.relation.references | 14. Zhao, Z., Qin, J., Gou, Z., Zhang, Y., & Yang, Y. (2020). Multi-task learning models for predicting active compounds. Journal of Biomedical Informatics, 108(103484), 103484. https://doi.org/10.1016/j.jbi.2020.103484 | |
dc.relation.references | 15. Shah, P., Siramshetty, V. B., Zakharov, A. V., Southall, N. T., Xu, X., & Nguyen, D.-T. (2020). Predicting liver cytosol stability of small molecules. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00426-7 | |
dc.relation.references | 16. Burggraaff, L., van Vlijmen, H. W. T., IJzerman, A. P., & van Westen, G. J. P. (2020). Quantitative prediction of selectivity between the A1 and A2A adenosine receptors. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00438-3 | |
dc.relation.references | 17. Du, Q.-S., Huang, R.-B., Wei, Y.-T., Pang, Z.-W., Du, L.-Q., & Chou, K.-C. (2009). Fragment‐based quantitative structure–activity relationship (FB‐QSAR) for fragment‐based drug design. Journal of Computational Chemistry, 30(2), 295–304. doi:10.1002/jcc.21056 | |
dc.relation.references | 18. Kim, E., & Nam, H. (2017). Prediction models for drug-induced hepatotoxicity by using weighted molecular fingerprints. BMC Bioinformatics, 18(S7). https://doi.org/10.1186/s12859-017-1638-4 | |
dc.relation.references | 19. Simões, R. S., Maltarollo, V. G., Oliveira, P. R., & Honorio, K. M. (2018). Transfer and multi-task learning in QSAR modeling: Advances and challenges. Frontiers in pharmacology, 9. https://doi.org/10.3389/fphar.2018.00074 | |
dc.relation.references | 20. Lampa, S., Alvarsson, J., Arvidsson Mc Shane, S., Berg, A., Ahlberg, E., & Spjuth, O. (2018). Predicting off-target binding profiles with confidence using conformal prediction. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.01256 | |
dc.relation.references | 21. Butkiewicz, M., Rodriguez, A. L., Rainey, S. E., Wieting, J., Luscombe, V. B., Stauffer, S. R., Lindsley, C. W., Conn, P. J., & Meiler, J. (2019). Identification of novel allosteric modulators of metabotropic glutamate receptor subtype 5 acting at site distinct from 2-methyl-6-(phenylethynyl)-pyridine binding. ACS Chemical Neuroscience, 10(8), 3427–3436. https://doi.org/10.1021/acschemneuro.8b00227 | |
dc.relation.references | 22. Huang, L.-C., Yeung, W., Wang, Y., Cheng, H., Venkat, A., Li, S., Ma, P., Rasheed, K., & Kannan, N. (2020). Quantitative Structure–Mutation–Activity Relationship Tests (QSMART) model for protein kinase inhibitor response prediction. BMC Bioinformatics, 21(1). https://doi.org/10.1186/s12859-020-03842-6 | |
dc.relation.references | 23. Cabrera-Andrade, A., López-Cortés, A., Jaramillo-Koupermann, G., González-Díaz, H., Pazos, A., Munteanu, C. R., Pérez-Castillo, Y., & Tejera, E. (2020). A multi-objective approach for anti-osteosarcoma cancer agents discovery through drug repurposing. Pharmaceuticals (Basel, Switzerland), 13(11), 409. https://doi.org/10.3390/ph13110409 | |
dc.relation.references | 24. He, X., Zhao, L., Zhong, W., Chen, H.-Y., Shan, X., Tang, N., & Chen, C. Y.-C. (2020). Insight into potent leads for alzheimer’s disease by using several artificial intelligence algorithms. Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy], 129(110360), 110360. https://doi.org/10.1016/j.biopha.2020.110360 | |
dc.relation.references | 25. Maharao, N., Antontsev, V., Hou, H., Walsh, J., & Varshney, J. (2020). Scalable in silico simulation of transdermal drug permeability: Application of BIOiSIM platform. Drug Design, Development and Therapy, 14, 2307–2317. https://doi.org/10.2147/dddt.s253064 | |
dc.relation.references | 26. Zanni, R., Galvez-Llompart, M., Garcia-Domenech, R., & Galvez, J. (2020). What place does molecular topology have in today’s drug discovery? Expert Opinion on Drug Discovery, 15(10), 1133–1144. https://doi.org/10.1080/17460441.2020.1770223 | |
dc.relation.references | 27. Jaganathan, K., Tayara, H., & Chong, K. T. (2022). An explainable supervised machine learning model for predicting respiratory toxicity of chemicals using optimal molecular descriptors. Pharmaceutics, 14(4), 832. https://doi.org/10.3390/pharmaceutics14040832 | |
dc.relation.references | 28. Wang, B., Tan, X., Guo, J., Xiao, T., Jiao, Y., Zhao, J., Wu, J., & Wang, Y. (2022). Drug-induced immune thrombocytopenia toxicity prediction based on machine learning. Pharmaceutics, 14(5), 943. https://doi.org/10.3390/pharmaceutics14050943 | |
dc.relation.references | 29. Feng, H., & Wei, G.-W. (2023). Virtual screening of DrugBank database for hERG blockers using topological Laplacian-assisted AI models. Computers in Biology and Medicine, 153(106491), 106491. https://doi.org/10.1016/j.compbiomed.2022.106491 | |
dc.relation.references | 30. Vittorio, S., Lunghini, F., Pedretti, A., Vistoli, G., & Beccari, A. R. (2023). Ensemble of structure and ligand-based classification models for hERG liability profiling. Frontiers in Pharmacology, 14. https://doi.org/10.3389/fphar.2023.1148670 | |
dc.relation.references | 31. Kelleci Çelik, F., Doğan, S., & Karaduman, G. (2024). Drug-induced torsadogenicity prediction model: An explainable machine learning-driven quantitative structure-toxicity relationship approach. Computers in Biology and Medicine, 182(109209), 109209. https://doi.org/10.1016/j.compbiomed.2024.109209 | |
dc.relation.references | 32. Cao, A., Zhang, L., Bu, Y., & Sun, D. (2024). Machine learning prediction of on/off target-driven clinical adverse events. Pharmaceutical Research, 41(8), 1649–1658. https://doi.org/10.1007/s11095-024-03742-x | |
dc.relation.references | 33. Cao, Y., Taghvaie Nakhjiri, A., & Ghadiri, M. (2024). Different applications of machine learning approaches in materials science and engineering: Comprehensive review. Engineering Applications of Artificial Intelligence, 135(108783), 108783. https://doi.org/10.1016/j.engappai.2024.108783 | |
dc.relation.references | 34. Bannigan, P., Aldeghi, M., Bao, Z., Häse, F., Aspuru-Guzik, A., & Allen, C. (2021). Machine learning directed drug formulation development. Advanced Drug Delivery Reviews, 175(113806), 113806. https://doi.org/10.1016/j.addr.2021.05.016 | |
dc.relation.references | 35. Hayashi, Y., Nakano, Y., Marumo, Y., Kumada, S., Okada, K., & Onuki, Y. (2021). Application of machine learning to a material library for modeling of relationships between material properties and tablet properties. International Journal of Pharmaceutics, 609(121158), 121158. https://doi.org/10.1016/j.ijpharm.2021.121158 | |
dc.relation.references | 36. Wang, N.-N., Wang, X.-G., Xiong, G.-L., Yang, Z.-Y., Lu, A.-P., Chen, X., Liu, S., Hou, T.-J., & Cao, D.-S. (2022). Machine learning to predict metabolic drug interactions related to cytochrome P450 isozymes. Journal of Cheminformatics, 14(1). https://doi.org/10.1186/s13321-022-00602-x | |
dc.relation.references | 37. Ahn, S., Lee, S. E., & Kim, M.-H. (2022). Random-forest model for drug–target interaction prediction via Kullback–Leibler divergence. Journal of Cheminformatics, 14(1). https://doi.org/10.1186/s13321-022-00644-1 | |
dc.relation.references | 38. Jabeen, F., Rehman, Z. U., Shah, S., Alharthy, R. D., Jalil, S., Khan, I. A., Iqbal, J., & El-Latif, A. A. A. (2023). Deep learning-based prediction of inhibitors interaction with Butyrylcholinesterase for the treatment of Alzheimer’s disease. Computers & Electrical Engineering: An International Journal, 105(108475), 108475. https://doi.org/10.1016/j.compeleceng.2022.108475 | |
dc.relation.references | 39. Chandrasekar, V., Ansari, M. Y., Singh, A. V., Uddin, S., Prabhu, K. S., Dash, S., Khodor, S. A., Terranegra, A., Avella, M., & Dakua, S. P. (2023). Investigating the use of machine learning models to understand the drugs permeability across placenta. IEEE Access: Practical Innovations, Open Solutions, 11, 52726–52739. https://doi.org/10.1109/access.2023.3272987 | |
dc.relation.references | 40. Noor F, Asif M, Ashfaq UA, Qasim M, Tahir Ul Qamar M. Machine learning for synergistic network pharmacology: a comprehensive overview. Brief Bioinform. 2023 May 19;24(3):bbad120. doi: 10.1093/bib/bbad120. | |
dc.relation.references | 41. Rezaee, P., Rezaee, S., Maaza, M., & Arab, S. S. (2024). Screening of BindingDB database ligands against EGFR, HER2, Estrogen, Progesterone and NF-κB receptors based on machine learning and molecular docking. Computers in Biology and Medicine, 183(109279), 109279. https://doi.org/10.1016/j.compbiomed.2024.109279 | |
dc.relation.references | 42. Najm, M., Azencott, C.-A., Playe, B., & Stoven, V. (2021). Drug target identification with machine learning: How to choose negative examples. International Journal of Molecular Sciences, 22(10), 5118. https://doi.org/10.3390/ijms22105118 | |
dc.relation.references | 43. Czub, N., Pacławski, A., Szlęk, J., & Mendyk, A. (2021). Curated database and preliminary AutoML QSAR model for 5-HT1A receptor. Pharmaceutics, 13(10), 1711. https://doi.org/10.3390/pharmaceutics13101711 | |
dc.relation.references | 44. Wang, X., Sun, Y., Ling, L., Ren, X., Liu, X., Wang, Y., Dong, Y., Ma, J., Song, R., Yu, A., Wei, J., Fan, Q., Guo, M., Zhao, T., Dao, R., & She, G. (2021). Gaultheria leucocarpa var. Yunnanensis for treating rheumatoid arthritis—an assessment combining machine learning–guided ADME properties prediction, network pharmacology, and pharmacological assessment. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.704040 | |
dc.relation.references | 45. Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. H. M., & Ahsan, M. J. (2022). Machine learning in drug discovery: A review. Artificial Intelligence Review, 55(3), 1947–1999. https://doi.org/10.1007/s10462-021-10058-4 | |
dc.relation.references | 46. Bajorath, J., Chávez-Hernández, A. L., Duran-Frigola, M., Fernández-de Gortari, E., Gasteiger, J., López-López, E., Maggiora, G. M., Medina-Franco, J. L., Méndez-Lucio, O., Mestres, J., Miranda-Quintana, R. A., Oprea, T. I., Plisson, F., Prieto-Martínez, F. D., Rodríguez-Pérez, R., Rondón-Villarreal, P., Saldívar-Gonzalez, F. I., Sánchez-Cruz, N., & Valli, M. (2022). Chemoinformatics and artificial intelligence colloquium: progress and challenges in developing bioactive compounds. Journal of Cheminformatics, 14(1). https://doi.org/10.1186/s13321-022-00661-0 | |
dc.relation.references | 47. Vemula, D., Jayasurya, P., Sushmitha, V., Kumar, Y. N., & Bhandari, V. (2023). CADD, AI and ML in drug discovery: A comprehensive review. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 181(106324), 106324. doi:10.1016/j.ejps.2022.106324 | |
dc.relation.references | 48. Feng, H., Elladki, R., Jiang, J., & Wei, G.-W. (2023). Machine-learning analysis of opioid use disorder informed by MOR, DOR, KOR, NOR and ZOR-based interactome networks. Computers in Biology and Medicine, 157(106745), 106745. https://doi.org/10.1016/j.compbiomed.2023.106745 | |
dc.relation.references | 49. Feng, H., Jiang, J., & Wei, G.-W. (2023). Machine-learning repurposing of DrugBank compounds for opioid use disorder. Computers in Biology and Medicine, 160(106921), 106921. https://doi.org/10.1016/j.compbiomed.2023.106921 | |
dc.relation.references | 50. Schaduangrat, N., Anuwongcharoen, N., Charoenkwan, P., & Shoombuatong, W. (2023). DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists. Journal of Cheminformatics, 15(1). https://doi.org/10.1186/s13321-023-00721-z | |
dc.relation.references | 51. Srisongkram, T., & Weerapreeyakul, N. (2022). Drug repurposing against KRAS mutant G12C: A machine learning, molecular docking, and molecular dynamics study. International Journal of Molecular Sciences, 24(1), 669. https://doi.org/10.3390/ijms24010669 | |
dc.relation.references | 52. Niazi, S. (2023). The coming of age of AI/ML in drug discovery, development, clinical testing, and manufacturing: The FDA perspectives. Drug Design, Development and Therapy, 17, 2691–2725. https://doi.org/10.2147/dddt.s424991 | |
dc.relation.references | 53. Zukić, S., Osmanović, A., Harej Hrkać, A., Kraljević Pavelić, S., Špirtović-Halilović, S., Veljović, E., Roca, S., Trifunović, S., Završnik, D., & Maran, U. (2024). Data-driven modelling of substituted pyrimidine and uracil-based derivatives validated with newly synthesized and antiproliferative evaluated compounds. International Journal of Molecular Sciences, 25(17), 9390. https://doi.org/10.3390/ijms25179390 | |
dc.relation.references | 54. Xiao, F., Ding, X., Shi, Y., Wang, D., Wang, Y., Cui, C., Zhu, T., Chen, K., Xiang, P., & Luo, X. (2024). Application of ensemble learning for predicting GABAA receptor agonists. Computers in Biology and Medicine, 169(107958), 107958. https://doi.org/10.1016/j.compbiomed.2024.107958 | |
dc.relation.references | 55. Pillai, N., Dasgupta, A., Sudsakorn, S., Fretland, J., & Mavroudis, P. D. (2022). Machine Learning guided early drug discovery of small molecules. Drug Discovery Today, 27(8), 2209–2215. doi:10.1016/j.drudis.2022.03.017 | |
dc.relation.references | 56. Ota, R., & Yamashita, F. (2022). Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics. Journal of Controlled Release: Official Journal of the Controlled Release Society, 352, 961–969. https://doi.org/10.1016/j.jconrel.2022.11.014 | |
dc.relation.references | 57. Han, R., Yoon, H., Kim, G., Lee, H., & Lee, Y. (2023). Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery. Pharmaceuticals (Basel, Switzerland), 16(9), 1259. https://doi.org/10.3390/ph16091259 | |
dc.relation.references | 58. Gil-Pichardo, A., Sánchez-Ruiz, A., & Colmenarejo, G. (2023). Analysis of metabolites in human gut: illuminating the design of gut-targeted drugs. Journal of Cheminformatics, 15(1). https://doi.org/10.1186/s13321-023-00768-y | |
dc.relation.references | 59. Zhong, J., Xuan, W., Lu, S., Cui, S., Zhou, Y., Tang, M., Qu, X., Lu, W., Huo, H., Zhang, C., Zhang, N., & Niu, B. (2023). Discovery of ANO1 Inhibitors based on Machine learning and molecule docking simulation approaches. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 184(106408), 106408. https://doi.org/10.1016/j.ejps.2023.106408 | |
dc.relation.references | 60. Moreno-Torres, M., López-Pascual, E., Rapisarda, A., Quintás, G., Drees, A., Steffensen, I.-L., Luechtefeld, T., Serrano-Candelas, E., de Lomana, M. G., Gadaleta, D., Dirven, H., Vinken, M., & Jover, R. (2024). Novel clinical phenotypes, drug categorization, and outcome prediction in drug-induced cholestasis: Analysis of a database of 432 patients developed by literature review and machine learning support. Biomedecine & Pharmacotherapie [Biomedicine & Pharmacotherapy], 174(116530), 116530. https://doi.org/10.1016/j.biopha.2024.11653 | |
dc.relation.references | 61. Zhai, S., Tan, Y., Zhu, C., Zhang, C., Gao, Y., Mao, Q., Zhang, Y., Duan, H., & Yin, Y. (2024). PepExplainer: An explainable deep learning model for selection-based macrocyclic peptide bioactivity prediction and optimization. European Journal of Medicinal Chemistry, 275(116628), 116628. https://doi.org/10.1016/j.ejmech.2024.116628 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Diseño racional de farmacos | |
dc.subject | Aprendizaje automático | |
dc.subject | CADD | |
dc.subject | Redes neuronales artificiales | |
dc.subject | Impacto en la química farmacéutica | |
dc.subject.ddc | 615.19 | |
dc.subject.keywords | Rational drug design | |
dc.subject.keywords | Machine Learning | |
dc.subject.keywords | CADD | |
dc.subject.keywords | Artificial neural networks | |
dc.subject.keywords | Impact on pharmaceutical chemistry | |
dc.title | Machine Learning en el diseño racional de fármacos: nuevos avances en el descubrimiento de fármacos (2000-2024) | |
dc.title.translated | Machine Learning in rational drug design: new advances in drug discovery (2000-2024) | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 648.85 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 551.03 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 acta de aprobacion.pdf
- Tamaño:
- 10.21 MB
- Formato:
- Adobe Portable Document Format
- Descripción: