Sensibilidad y especificidad de un sistema inteligente basado en programación redes bayesianas para el diagnóstico de la enfermedad pulmonar obstructiva crónica

dc.contributor.advisorNarvaez Gonzalez, Javier Alejandro
dc.contributor.authorBastidas Goyes, Alirio Rodrigo
dc.date.accessioned2022-08-02T22:30:26Z
dc.date.available2022-08-02T22:30:26Z
dc.date.issued2014
dc.description.abstractAntecedentes y objetivo: La enfermedad pulmonar obstructiva crónica es frecuentemente mal diagnosticada, sensibilizar a personas con síntomas respiratorios para que consulten, entrenar a personal médico y usar la espirometría como método de detección temprana son medidas utilizadas que han alcanzado algunos resultados a un costo económico considerable en el abordaje de este problema, por lo que se propone el desarrollo de un algoritmo diagnóstico basado en programación de redes bayesianas para el diagnóstico de la EPOC y que pueda ser de utilidad para disminuir los porcentajes de mal diagnóstico a un bajo costo. Metodología: construcción de un diagrama diagnóstico basado en literatura médica y opinión de expertos validado como prueba diagnóstica en un estudio de cohorte retrospectiva utilizando en las relaciones de ejecución del diagrama programación de Redes Bayesianas. Resultados: Se analizaron 510 historias 41,2% con EPOC, 22,2% ASMA, 28% ICCVI, 28,8% TBC, 2,2% bronquiectasias, la sensibilidad de la red Bayesiana para el diagnóstico de EPOC fue del 90%, especificidad del 91%, con una probabilidad de clasificación correcta del 90,2%, para el diagnóstico de Asma sensibilidad del 83%, especificidad 85% y probabilidad de clasificación correcta del 83,2%, para el diagnóstico de ICC ventricular izquierda sensibilidad del 85%, especificidad del 88% y probabilidad de clasificación correcta del 86%, para tuberculosis la sensibilidad de 77%, especificidad del 97 % y probabilidad de clasificación correcta 87% y para bronquiectasias sensibilidad del 19%, especificidad del 98% y probabilidad de clasificación correcta del 57%. Conclusión: La construcción de una red bayesiana para diagnóstico de EPOC puede llegar a tener una clasificación correcta de la EPOC hasta en un 90.7%, con sensibilidad del 90% y especificidad del 91%. Se requieren estudios de cohorte en diferentes niveles de atención para la validación prospectiva de estos resultados.spa
dc.description.abstractenglishBackground and aim : Chronic obstructive pulmonary disease is often misdiagnosed, sensitize people with respiratory symptoms to consult, train medical personnel and using spirometry as a method of early detection measures are used that have achieved some results at considerable economic cost in addressing this issue, so the development of a diagnostic algorithm based on programming Bayesian networks for diagnosis of COPD and can be useful to reduce misdiagnosis rates at a low cost is proposed. Methodology: constructing a diagnostic diagram based on medical literature and expert opinion validated as a diagnostic test in a retrospective cohort study using relationships execution diagram programming Bayesian Networks . Results: 510 stories COPD 41.2 % , 22.2% ASMA , 28 % ICCVI , TBC 28.8 % , 2.2% bronchiectasis, the sensitivity of the Bayesian network for the diagnosis of COPD were analyzed was 90% , specificity of 91 % , with a probability of correct classification of 90.2 % for the diagnosis of asthma sensitivity 83 % , specificity 85 % and the probability of correct classification of 83.2 % for the diagnosis of left ventricular sensibility ICC 85% , specificity of 88 % and probability of correct classification of 86 % for tuberculosis sensitivity 77 % , specificity of 97% and 87 % probability of correct classification for bronchiectasis and sensitivity 19%, specificity of 98 % and probability correct classification of 57% . Conclusion : The construction of a Bayesian network for diagnosis of COPD can have a correct classification of COPD by up to 90.7 % , with 90% sensitivity and 91% specificity . Cohort studies are needed at different levels of care for the prospective validation of these results.eng
dc.description.degreelevelEspecializaciónspa
dc.description.degreenameEspecialista en Epidemiologíaspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/8593
dc.language.isospa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programEspecialización en Epidemiologíaspa
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.localAcceso abiertospa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectSensibilidadspa
dc.subjectEspecificidadspa
dc.subjectRedesspa
dc.subjectNeuronalesspa
dc.subjectDiagnostico asistido por computadorspa
dc.subject.keywordsSpecificityspa
dc.subject.keywordsComputer diagnosisspa
dc.subject.keywordsNeural networksspa
dc.subject.nlmWA 105
dc.titleSensibilidad y especificidad de un sistema inteligente basado en programación redes bayesianas para el diagnóstico de la enfermedad pulmonar obstructiva crónicaspa
dc.title.translatedSensitivity and specificity of an intelligent scheduling system based on bayesian networks for diagnosis of chronic obstructive pulmonary diseasespa
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Especializaciónspa

Archivos

Bloque original
Mostrando 1 - 3 de 3
Cargando...
Miniatura
Nombre:
Bastidas_Goyes_Alirio_Rodrigo_2014.pdf
Tamaño:
3.45 MB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
Bastidas_Goyes_Alirio_Rodrigo_2014_anexos.pdf
Tamaño:
589.62 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Bastidas_Goyes_Alirio_Rodrigo_2014_carta_de_autorización.pdf
Tamaño:
193.08 KB
Formato:
Adobe Portable Document Format
Descripción:
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: