Plan A
dc.contributor.advisor | Herrera Caceres, Fabian | |
dc.contributor.author | Velasquez Caicedo, Jaime Andres | |
dc.date.accessioned | 2025-05-26T20:59:26Z | |
dc.date.available | 2025-05-26T20:59:26Z | |
dc.date.issued | 2025-05 | |
dc.description.abstract | Plan A: Revolucionando el planeamiento quirúrgico es una propuesta tecnológica que busca transformar la forma en que se realiza la planificación preoperatoria en cirugías estéticas, a través de visualización tridimensional inmersiva. En el contexto colombiano, la mayoría de procedimientos se planean a partir de fotografías bidimensionales, lo cual limita la comprensión del volumen anatómico y puede inducir a errores de interpretación. Plan A responde a esta problemática permitiendo generar modelos hiperrealistas del paciente a partir de video, usando una técnica emergente conocida como Gaussian Splatting. Estos modelos volumétricos se convierten en mallas poligonales editables y son manipulables desde una interfaz de escritorio conectada a dispositivos como las Meta Quest 3, ofreciendo una experiencia de realidad virtual que permite simular el proceso de marcaje quirúrgico, ajustar condiciones de luz y evaluar resultados desde distintos ángulos. El desarrollo fue realizado en Unreal Engine y se diseñó para operar sin necesidad de infraestructura clínica especializada. El prototipo fue validado con médicos en formación y profesionales de instituciones como la Universidad El Bosque y la FUCS, quienes destacaron su utilidad tanto en la formación como en la consulta profesional. A nivel técnico, el sistema demostró ser viable, escalable y accesible en términos de hardware y flujo de trabajo. Plan A se consolida así como una alternativa para mejorar la precisión, la autonomía y la comunicación en el planeamiento quirúrgico, con potencial de expansión a otras áreas del sector salud. | |
dc.description.abstractenglish | Plan A: Revolutionizing Surgical Planning is a technological proposal aimed at transforming preoperative planning in aesthetic surgery through immersive three-dimensional visualization. In the Colombian context, most procedures are still planned using two-dimensional photographs, which limit spatial understanding and often lead to interpretative errors. Plan A addresses this limitation by generating hyperrealistic models of the patient from video input, using an emerging technique called Gaussian Splatting. These volumetric models are converted into editable polygonal meshes and manipulated via a desktop interface connected to devices such as Meta Quest 3, allowing for a virtual reality experience where surgical markings can be simulated, lighting adjusted, and visual assessments made from multiple angles. The system was developed in Unreal Engine and designed to function without the need for specialized clinical infrastructure. The prototype was validated with surgical trainees and professionals from institutions such as Universidad El Bosque and FUCS, who highlighted its potential for both educational and professional use. Technically, the system proved to be viable, scalable, and accessible in terms of required hardware and workflow. Plan A emerges as a robust tool to enhance precision, autonomy, and communication in surgical planning, with potential applications across various healthcare domains. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Diseñador Industrial | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/14479 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Creación y Comunicación | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Diseño Industrial | spa |
dc.relation.references | Bischoff, M., Lohr, J., Brown, P., Eriksson, L., Lee, J., & Pfeiffer, J. (2024). Surgical planning in virtual reality: a systematic review. Journal of Medical Imaging, 11(1). https://pubmed.ncbi.nlm.nih.gov/38680654/ | |
dc.relation.references | Reinschluessel, A. V., Teuber, J., Herrlich, M., Birnbaum, J., Runge, M., Lurz, J., Dorawa, D., Schlaefer, A., & Malaka, R. (2022). Virtual Reality for Surgical Planning – Evaluation Based on Two Real Cases. Frontiers in Surgery, 9. https://www.frontiersin.org/articles/10.3389/fsurg.2022.821060/full | |
dc.relation.references | Yeung, V. N., Jones, M. M., Xu, K., Waller, J., & Boykin, R. (2023). Extended reality in surgical education: A systematic review. American Journal of Surgery, 226(6), 1191-1203. https://pubmed.ncbi.nlm.nih.gov/37640664/ | |
dc.relation.references | Mietzsch, L., Schlögl, J., Wroschnig, K., Anderl, W., Grieger, G., Kreutzer, A., Kerbl, R., & Brandtner, C. (2025). Validation of mixed reality in planning orbital reconstruction with patient-specific reconstruction plates. Scientific Reports, 15. https://www.nature.com/articles/s41598-025-85154-4 | |
dc.relation.references | Pensold, S., Lalli, M., Kiesel, F., Molina-Fuentes, W., Engel, V. R., Krauss, P., Wirtz, C. R., Richter, C., & Coburger, J. (2024). Intraoperative Videogrammetry and Photogrammetry for Neurosurgical Education. Operative Neurosurgery, 26(3). https://pubmed.ncbi.nlm.nih.gov/38386966/ | |
dc.relation.references | Wang, F., Zhang, S., Wu, X., Yan, Y., Huang, J., Wang, J., Li, S., Kim, J., & Zhu, Z. (2021). SurgicalGS: Dynamic 3D Gaussian Splatting for Accurate Robotic-Assisted Surgical Scene Reconstruction. arXiv. https://arxiv.org/html/2410.09292v1 | |
dc.relation.references | Kleinbeck, C., Schieber, H., Engel, K., Gutjahr, R., & Roth, D. (2025). Multi-Layer Gaussian Splatting for Immersive Anatomy Visualization. IEEE Virtual Reality Conference. https://www.youtube.com/watch?v=epskPOkHel4 | |
dc.relation.references | Gatto, S., La Meir, M., Postolache, O., & Chierchia, G. B. (2023). Evaluation of photogrammetry for medical application in cardiology. Frontiers in Bioengineering and Biotechnology, 11. https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2023.1044647/full | |
dc.relation.references | Cercenelli, L. (2024). The Potential of AR in Preoperative Oncovascular Surgical Planning. Materialise. https://www.materialise.com/en/inspiration/articles/ar-preoperative-oncovascular-surgical-planning | |
dc.relation.references | Ghiselli, S., Angelini, A., Piani, L., Sandrini, L., Tassani, E., Mantovani, V., Redaelli, A., Napodano, S., Avesani, M., Padalino, M. A., Bonato, E., Vida, V. L., Stellin, G., & Torregrossa, G. (2025). Mixed reality for preoperative planning and intraoperative guidance in congenital heart surgery. The Journal of Thoracic and Cardiovascular Surgery. https://pubmed.ncbi.nlm.nih.gov/39863080/ | |
dc.relation.references | Ruiz Flores, J., Santillán-Doherty, P., Cañedo, A., Serrano, L., & Mora, H. (2018). Utilidad de la simulación de realidad virtual en la residencia de Cirugía Cardiotorácica. Neumología y cirugía de tórax, 77(1), 10-15. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0028-37462018000100010 | |
dc.relation.references | Secanella, L., Munné, M., Hackl, M., & Charco, R. (2023). Augmented reality in hepatobiliary-pancreatic surgery. Cirugía Española (English Edition), 101(5), 345-347. https://www.elsevier.es/en-revista-cirugia-espanola-english-edition--436-articulo-augmented-reality-in-hepatobiliary-pancreatic-surgery-S2173507723000388 | |
dc.relation.references | Sánchez-Margallo, F. M., Sánchez-Margallo, J. A., Moyano-Cuevas, J. L., Pérez, E. M., & Maestre, J. (2021). Application of Mixed Reality in Medical Training and Surgical Planning. Frontiers in Virtual Reality, 2. https://www.frontiersin.org/journals/virtual-reality/articles/10.3389/frvir.2021.692641/full | |
dc.relation.references | Crisalix. (s. f.). Crisalix VR 4D Simulator. https://www.crisalix.com | |
dc.relation.references | Allure. (2021). If You've Ever Considered Plastic Surgery, This App Lets You “Try On” Cosmetic Procedures. https://www.allure.com/story/aedit-plastic-surgery-app-review | |
dc.relation.references | Canfield Scientific. (s. f.-a). Vectra XT 3D Imaging System. https://www.canfieldsci.com/imaging-systems/vectra-xt-3d-imaging-system/ | |
dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Planeamiento | |
dc.subject | Quirúrgico | |
dc.subject | Cirugía | |
dc.subject | Realidad virtual | |
dc.subject | Simulación | |
dc.subject | Visualización | |
dc.subject | 3D | |
dc.subject | Escaneo | |
dc.subject.ddc | 745.2 | |
dc.subject.keywords | Planning | |
dc.subject.keywords | Surgical | |
dc.subject.keywords | Surgery | |
dc.subject.keywords | Virtual Reality | |
dc.subject.keywords | Simulation | |
dc.subject.keywords | Visualization | |
dc.subject.keywords | 3D | |
dc.subject.keywords | Scanning | |
dc.title | Plan A | |
dc.title.translated | Plan A | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 771.58 KB
- Formato:
- Adobe Portable Document Format