Métodos para el análisis de infecciones del sitio quirúrgico (ISQ). Scoping Review
dc.contributor.advisor | Arias Ortiz, Wanderley Augusto | |
dc.contributor.advisor | Porras Ramírez, Alexandra | |
dc.contributor.author | Virguez Sánchez, Valeria | |
dc.contributor.author | López Salazar, David Santiago | |
dc.contributor.orcid | Virguez Sanchez, Valeria [0009-0007-6535-4984] | |
dc.contributor.orcid | López Salazar, David Santiago [0009-0002-5972-0996] | |
dc.date.accessioned | 2025-06-03T17:01:33Z | |
dc.date.available | 2025-06-03T17:01:33Z | |
dc.date.issued | 2025-05 | |
dc.description.abstract | Abstract Introducción: Las infecciones de sitio quirúrgico (ISQ) es uno de los eventos adversos que se reportan con mayor frecuencia en las instituciones prestadoras del servicio de salud a nivel mundial, independientemente al desarrollo del país. Aun teniendo guías de prevención, las infecciones de ISQ siguen siendo un desafío global en el área de la salud. Objetivo principal: Identificar los principales factores asociados a las infecciones del sitio quirúrgico (ISQ) junto a los modelos y softwares de análisis estadísticos más empleados en distintas especialidades y procedimientos quirúrgicos. Materiales y métodos: Este es un estudio de tipo Scoping Review se realizó empleando la metodología propuesta por Arksey y O’Malley, con una búsqueda en la literatura en las bases de datos PubMed, BIREME y Embase. Se seleccionaron estudios publicados entre los años 2020 a 2025, y en idioma inglés, español y portugués. Resultados: Se incluyeron 120 artículos de 3473 artículos recolectados en total de las bases de datos sobre las infecciones del sitio quirúrgico (ISQ). Se descartaron los artículos que no tengan acceso completo, sin modelo estadístico, tipo de estudio y que no sea específicamente de intervenciones quirúrgicas en seres humanos. El procedimiento quirúrgico con mayor relevancia epidemiológica y artículos sobre de casos de ISQ eran los procedimientos de cesárea. Los factores más comunes en todos los artículos incluidos eran variables sociodemográficas como edad, sexo e IMC, seguidas de las comorbilidades y factores asociados al procedimiento quirúrgico. Conclusión: El modelo de regresión logística fue el modelo estadístico más empleado junto al software IBM SPSS para el análisis de las variables. Se identificó con base a la literatura que las especialidades de cirugía general y ortopedia presentaban un mayor número de publicaciones. | |
dc.description.abstractenglish | Abstract Introduction: Surgical site infections (SSIs) are one of the most frequently reported adverse events in healthcare institutions worldwide, regardless of the country's level of development. Even with prevention guidelines in place, SSIs remain a global challenge in healthcare. Main objective: To identify the main factors associated with surgical site infections (SSIs) along with the most commonly used statistical analysis models and software in different specialties and surgical procedures. Materials and methods: This is a scoping review study conducted using the methodology proposed by Arksey and O'Malley, with a literature search in the PubMed, BIREME, and Embase databases. Studies published between 2020 and 2025 in English, Spanish, and Portuguese were selected. Results: A total of 120 articles were included from 3,473 articles collected from databases on surgical site infections (SSIs). Articles that did not have full access, did not include a statistical model or study type, and were not specifically about surgical interventions in humans were excluded. The surgical procedure with the highest epidemiological relevance and articles on SSI cases were cesarean section procedures. The most common factors in all the articles included were sociodemographic variables such as age, sex, and BMI, followed by comorbidities and factors associated with the surgical procedure. Conclusion: The logistic regression model was the most widely used statistical model, together with IBM SPSS software for the analysis of variables. Based on the literature, it was found that general surgery and orthopedics were the specialties with the highest number of publications. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Profesional en Instrumentación Quirúrgica | spa |
dc.description.sponsorship | Los Cobos Medical Center | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/14537 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Instrumentación Quirúrgica | spa |
dc.relation.references | 1. Dirección de Vigilancia y Análisis del Riesgo en Salud Pública. Protocolo de Vigilancia en salud pública. Brotes de infecciones asociadas a la atención en salud [Internet]. Instituto Nacional de Salud - Dirección de Vigilancia y Análisis del Riesgo en Salud Pública; 2024 Jul [cited 2024 Apr 3]. Available from: https://www.ins.gov.co/buscador-eventos/Lineamientos/Pro_IAAS%202024.pdf | |
dc.relation.references | 2. Organización Panamericana de la Salud. Menos IAAS, menos resistencia antimicrobiana [Internet]. 2022 jun 10 [cited 2024 Apr 3]. Disponible en: https://www.paho.org/es/noticias/10-6-2022-menos-iaas-menos-resistencia-antimicrobiana | |
dc.relation.references | 3. Jordan Dionne Erica, Rodríguez Fernández Zenén, Ricardo Ramírez José Manuel, Cisneros Domínguez Carmen María, Piña Prieto Luís Roberto. Consideraciones en torno a la génesis de las infecciones posoperatorias. Rev. cuban. med. mil. [Internet]. 2022 Dic [cited 2025 Apr 6] ; 51( 4 ): . Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572022000400007&lng=es. | |
dc.relation.references | 4. Mengistu DA, Alemu A, Abdukadir AA, Husen AM, Ahmed F, Mohammed B, et al. Global Incidence of Surgical Site Infection Among Patients: Systematic Review and Meta-Analysis. Inquiry [Internet]. 2023 Mar 25 [cited 2025 Apr 6];60:00469580231162549. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041599/ | |
dc.relation.references | 5. Friedman C. El costo de las infecciones asociadas a la atención en salud. En: Conceptos básicos de control de infecciones [Internet]. International Federation of Infection Control (IFIC); 2011 [cited 2025 Apr 6]. Disponible en: https://www.theific.org/wp-content/uploads/2014/08/Spanish_ch28_PRESS.pdf | |
dc.relation.references | 6. Rodríguez Nájera GF, Camacho Barquero FA, Umaña Bermúdez CA. Factores de riesgo y prevención de infecciones del sitio quirúrgico. Rev Méd Sinerg. 2020;5(4):e444. doi: 10.31434/rms.v5i4.444. Disponible en: https://www.revistamedicasinergia.com/index.php/rms/article/download/444/807?inline=1 | |
dc.relation.references | 7. Aguayo. Insights vs. Hallazgos: Descubre la Esencia de la Investigación Inteligente [Internet]. Aguayo.co. [cited 2025 Apr 8]. Disponible en: https://aguayo.co/es/blog-aguayo-experiencia-usuario/insights-vs-hallazgos-investigacion-inteligente/ | |
dc.relation.references | 8. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19-32. [cited 2025 Apr 8] doi: 10.1080/1364557032000119616. Disponible en: https://www.tandfonline.com/doi/full/10.1080/1364557032000119616 | |
dc.relation.references | 9. Miskiewicz M, Madera R, Pesselev I, Gallagher J, Komatsu D, Nicholson J. Postoperative complications and cost implications in sickle cell disease patients undergoing total hip arthroplasty: A national inpatient sample study. Journal of Orthopaedics [Internet]. 2025 [cited 2025 Apr 27];64:68–72. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0972978X24004112 | |
dc.relation.references | 10. Rakhshani Moghaddam F, Razavi M, Delaramifar Z. Prevalence and Risk Factors of Surgical Site Infection Following Cesarean Section. J Kermanshah Univ Med Sci [Internet]. 2024 Oct 29 [cited 2025 Apr 27];29(1). Available from: https://brieflands.com/articles/jkums-148572 | |
dc.relation.references | 11. Schulz T, Kirsten T, Langer S, Nuwayhid R. Hope for the best, but prepare for the worst – Diagnostic accuracy of the American College of Surgeons National Surgical Quality Improvement Program – Risk model for patients undergoing abdominoplasty after massive weight loss – Results from a Retrospective Cohort Study. JPRAS Open [Internet]. 2025 [cited 2025 Apr 27];43:347–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352587824001906 | |
dc.relation.references | 12. Urakawa S, Michiura T, Tokuyama S, Fukuda Y, Miyazaki Y, Hayashi N, et al. Risk factors of postoperative infections in patients with iatrogenic gallbladder perforation during laparoscopic cholecystectomy. Clinical Nutrition Open Science [Internet]. 2025 [cited 2025 Apr 27];59:9–16. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2667268524001165 | |
dc.relation.references | 13. Lyle RE, Vy M, Mehrzad M, Eisen DB. Defect size and surgical site are key predictors of surgical site infection risk in dermatologic surgery: A retrospective cohort study. JAAD International [Internet]. 2025 [cited 2025 Apr 27];18:148–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666328724001755 | |
dc.relation.references | 14. Lee SW, Kim YJ, Song JW, Yu M, Rhu J, Paik PS, et al. Size Matters: Predicting Surgical Site Infection After Whole Breast Radiotherapy in the Era of Hypofractionation. JCM [Internet]. 2024 Dec 31 [cited 2025 Apr 27];14(1):184. Available from: https://www.mdpi.com/2077-0383/14/1/184 | |
dc.relation.references | 15. Capotosto S, Kim M, Ling K, Nazemi A, Tantone R, Wang E, et al. High and low body mass index increases the risk of short-term postoperative complications following total shoulder arthroplasty. JSES International [Internet]. 2025 [cited 2025 Apr 27];9(1):141–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666638324003669 | |
dc.relation.references | 16. Lai SL, Chang CH, Lee PC, Ho CM, Wu JM, Lai HS, et al. Impact of preoperative factors and waiting time on post-appendectomy complications: a retrospective study. Perioper Med [Internet]. 2024 Feb 21 [cited 2025 Apr 27];13(1):8. Available from: https://perioperativemedicinejournal.biomedcentral.com/articles/10.1186/s13741-024-00365-z | |
dc.relation.references | 17. Fujii A, Suzuki T, Sakai K, Matsuura N, Sugahara K, Katakura A, et al. Impact of skeletal muscle mass on postoperative complications in oral cancer surgery. Maxillofac Plast Reconstr Surg [Internet]. 2024 Mar 28 [cited 2025 Apr 27];46(1):12. Available from: https://jkamprs.springeropen.com/articles/10.1186/s40902-024-00417-w | |
dc.relation.references | 18. Savio L, Simeone P, Baron S, Antonini F, Bruder N, Boussen S, et al. Surgical site infection in severe trauma patients in intensive care: epidemiology and risk factors. Ann Intensive Care [Internet]. 2024 Sep 2 [cited 2025 Apr 27];14(1):136. Available from: https://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-024-01370-7 | |
dc.relation.references | 19. Hoang H, Gabriel B, Lung B, Yang S, Chan JP, the N3C Consortium. Timing of total joint arthroplasty post-COVID-19: an evaluation of the optimal window to minimize perioperative risks. Arthroplasty [Internet]. 2024 Oct 4 [cited 2025 Apr 27];6(1):53. Available from: https://arthroplasty.biomedcentral.com/articles/10.1186/s42836-024-00275-x | |
dc.relation.references | 20. Suvorov VV, Ivanov DO. Risk Factors for Surgical Site Infection After Cardiac Surgery in Neonates: A Case–Control Study. JCM [Internet]. 2024 Dec 19 [cited 2025 Apr 27];13(24):7755. Available from: https://www.mdpi.com/2077-0383/13/24/7755 | |
dc.relation.references | 21. Hagedorn C, Dornhöfer N, Aktas B, Weydandt L, Lia M. Risk Factors for Surgical Wound Infection and Fascial Dehiscence After Open Gynecologic Oncologic Surgery: A Retrospective Cohort Study. Cancers [Internet]. 2024 Dec 13 [cited 2025 Apr 27];16(24):4157. Available from: https://www.mdpi.com/2072-6694/16/24/4157 | |
dc.relation.references | 22. Kirby BJ, Poeran J, Zubizarreta N, London DA. Elective hand surgery and concomitant corticosteroid injection: Confirming increased infection risk using A national dataset. Surgery in Practice and Science [Internet]. 2024 [cited 2025 Apr 27];19:100259. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666262024000263 | |
dc.relation.references | 23. Mimbela J, Mejía C, Gutarra R. Risk factors in surgical wound infection after cesarean section. Ginecol Obstet Mex. 2024;92(12). [cited 2025 Apr 27];19:100259. Available from: https://ginecologiayobstetricia.org.mx/articulo/factores-de-riesgo-para-infeccion-de-herida-quirurgica-posterior-a-cesarea | |
dc.relation.references | 24. Matz D, Engelhardt S, Wiencierz A, Soysal SD, Misteli H, Kirchhoff P, et al. Do Antibacterial Skin Sutures Reduce Surgical Site Infections After Elective Open Abdominal Surgery?—A Prospective, Randomized Controlled Single-Center Trial. JCM [Internet]. 2024 Nov 12 [cited 2025 Apr 27];13(22):6803. Available from: https://www.mdpi.com/2077-0383/13/22/6803 | |
dc.relation.references | 25. Sotirović J, Rančić N, Pavićević L, Baletić N, Dimić A, Čukić O, et al. Surgical Site Infection after Primary Open Surgery for Laryngeal Cancer in a Tertiary Hospital in Belgrade, Serbia: A 10-Year Prospective Cohort Study. Antibiotics [Internet]. 2024 Sep 25 [cited 2025 Apr 27];13(10):918. Available from: https://www.mdpi.com/2079-6382/13/10/918 | |
dc.relation.references | 26. Peng Y, Ma Y, Yang G, Huang Y, Lin H, Ma X, et al. Development and validation of a clinical diagnostic model for surgical site infection after surgery in patients with gastric cancer. Transl Cancer Res [Internet]. 2024 [cited 2025 Apr 27];13(9):4659–70. Available from: https://tcr.amegroups.com/article/view/90494/html | |
dc.relation.references | 27. Bains SS, Dubin JA, Green C, Herzenberg JE, McClure PK. Infection rates and risk factors with magnetic intramedullary lengthening nails. Journal of Orthopaedics [Internet]. 2024 [cited 2025 Apr 27];55:124–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0972978X24001442 | |
dc.relation.references | 28. Rehwald CM, Hippe DS, Princing T, Horneber E, Sheehan K, Cohen W, et al. Spinal infection: Assessing comorbidities and costs to inform patient management and resource use strategies. North American Spine Society Journal (NASSJ) [Internet]. 2024 [cited 2025 Apr 27];19:100335. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666548424000283 | |
dc.relation.references | 29. Aktaş AA, Gülcü B, Işık Ö, Turkish Colorectal Cancer Database Study Group*. Risk Factors Affecting Surgical Site Infections in Colorectal Cancer Surgery: Analysis of National Multicenter Data. TJCD [Internet]. 2024 Sep 23 [cited 2025 Apr 27];90–6. Available from: https://www.turkishjcrd.com/articles/risk-factors-affecting-surgical-site-infections-in-colorectal-cancer-surgery-analysis-of-national-multicenter-data/doi/tjcd.galenos.2024.2024-7-5 | |
dc.relation.references | 30. Sigurdardottir M, Sigurdsson MI, Vias RD, Olafsson Y, Gunnarsdottir I, Sigurdsson EL, et al. Preoperative optimization of modifiable risk factors is associated with decreased superficial surgical site infections after total joint arthroplasty: a prospective case-control study. ActaO [Internet]. 2024 Jul 17 [cited 2025 Apr 27];95:392–400. Available from: https://actaorthop.org/actao/article/view/41012 | |
dc.relation.references | 31. LaValva SM, Bovonratwet P, Chen AZ, Lebrun DG, Davie RA, Shen TS, et al. Frequency and Timing of Postoperative Complications After Outpatient Total Hip Arthroplasty. Arthroplasty Today [Internet]. 2024 [cited 2025 Apr 27];27:101420. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2352344124001055 | |
dc.relation.references | 32. Sun H, Dong D, Zhao M, Jian J. Infection with multi‑drug resistant organisms in patients with limb fractures: Analysis of risk factors and pathogens. Biomed Rep [Internet]. 2023 Dec 22 [cited 2025 Apr 27];20(2):28. Available from: http://www.spandidos-publications.com/10.3892/br.2023.1716 | |
dc.relation.references | 33. Wang K, Jiang Y, Cao W, Zhao R. Analysis of pathogen distribution and associated risk factors for surgical site infections following laparoscopic urological surgeries. International Wound Journal [Internet]. 2024 [cited 2025 Apr 27];21(2):e14721. Available from: https://onlinelibrary.wiley.com/doi/10.1111/iwj.14721 | |
dc.relation.references | 34. Elfayeg M, Suleiman A, Eltohami Y. Frequency and Risk Factors of Surgical Site Infection among Sudanese Patients with Oral Squamous Cell Carcinoma. Messina G, editor. Canadian Journal of Infectious Diseases and Medical Microbiology [Internet]. 2024 Feb 8 [cited 2025 Apr 27];2024:1–7. Available from: https://www.hindawi.com/journals/cjidmm/2024/7525831/ | |
dc.relation.references | 35. Liang C, Lu Y, Luo X, Weng F. Microbial Etiology, Antimicrobial Resistance, and Risk Factors of Surgical Site Infections in Gestational Diabetes Mellitus Patients Undergoing Elective Pre-Labor Cesarean Deliveries. IDR [Internet]. 2024 [cited 2025 Apr 27];Volume 17:3507–17. Available from: https://www.dovepress.com/microbial-etiology-antimicrobial-resistance-and-risk-factors-of-surgic-peer-reviewed-fulltext-article-IDR | |
dc.relation.references | 36. Omara S, Kasujja M, Okot G, Okello P, Okello M, Mulumba R, et al. Predictors of Post-Caesarean Surgical Site Infections at Mubende Regional Referral Hospital, Central Uganda: Prospective Cohort Study (July–September 2023). IJWH [Internet]. 2024 [cited 2025 Apr 27];Volume 16:1939–45. Available from: https://www.dovepress.com/predictors-of-post-caesarean-surgical-site-infections-at-mubende-regio-peer-reviewed-fulltext-article-IJWH | |
dc.relation.references | 37. Garcell HG, Al-Ajmi J, Arias AV, Abraham JC, Fernandez Hernandez TM, Garcia FG. Risk factors for surgical site infection: An observational study in appendectomies performed in a community hospital in Qatar. Journal of Emergency Medicine, Trauma and Acute Care [Internet]. 2024 Oct 30 [cited 2025 Apr 27];2024(4). Available from: https://www.qscience.com/content/journals/10.5339/jemtac.2024.18 | |
dc.relation.references | 38. Aktaş A, Güner A, Güneş O, Karagül S, Karaköse O, Çolak EM, et al. A detailed analysis of surgical site infections and risk factors: A multicentric cohort study in Türkiye. 2024;[cited 2025 Apr 27]. Available from: https://dergipark.org.tr/en/pub/omujecm/issue/84625/1409076 | |
dc.relation.references | 39. Mohana NVS, Chava PK, Yadav BSP, Rani U. Predictors of surgical site infections in emergency general surgery cases: a prospective observational analysis. 2024;6(4):64–8[cited 2025 Apr 27]. Available from: https://academicmed.org/Uploads/Volume6Issue4/14.%20[3527.%20JAMP_PH]%2064-68.pdf | |
dc.relation.references | 40. Shivpuje VS, Talpallikar MC, Ahirsang LS, Talpallikar NM. Prevalence of Surgical Site Infections in General Surgery Patients: A Cross‐Sectional Study. 2024. [cited 2025 Apr 27]. Available from: https://makhillpublications.co/files/published-files/mak-rjms/2024/1-108-112.pdf | |
dc.relation.references | 41. Gupta A, Shin J, Oliver D, Vives M, Lin S. Incidence and risk factors for surgical site infection (SSI) after primary hip hemiarthroplasty: an analysis of the ACS-NSQIP hip fracture procedure targeted database. Arthroplasty [Internet]. 2023 Jan 3 [cited 2025 Apr 27];5(1):1. Available from: https://arthroplasty.biomedcentral.com/articles/10.1186/s42836-022-00155-2 | |
dc.relation.references | 42. Mundi R, Nucci N, Wolfstadt J, Pincus D, Chaudhry H. Risk of complications with prolonged operative time in morbidly obese patients undergoing elective total knee arthroplasty. Arthroplasty [Internet]. 2023 Feb 2 [cited 2025 Apr 27];5(1):6. Available from: https://arthroplasty.biomedcentral.com/articles/10.1186/s42836-022-00162-3 | |
dc.relation.references | 43. Lv Y, Mao X, Deng Y, Yu L, Chu J, Hao S, et al. Surgical site infections after elective craniotomy for brain tumor: a study on potential risk factors and related treatments. Chin Neurosurg Jl [Internet]. 2023 Aug 8 [cited 2025 Apr 27];9(1):23. Available from: https://cnjournal.biomedcentral.com/articles/10.1186/s41016-023-00336-1 | |
dc.relation.references | 44. Stavropoulou E, Atkinson A, Eisenring MC, Fux CA, Marschall J, Senn L, et al. Association of antimicrobial perioperative prophylaxis with cefuroxime plus metronidazole or amoxicillin/clavulanic acid and surgical site infections in colorectal surgery. Antimicrob Resist Infect Control [Internet]. 2023 Sep 19 [cited 2025 Apr 27];12(1):105. Available from: https://aricjournal.biomedcentral.com/articles/10.1186/s13756-023-01307-y | |
dc.relation.references | 45. Ansorge A, Betz M, Wetzel O, Burkhard MD, Dichovski I, Farshad M, et al. Perioperative Urinary Catheter Use and Association to (Gram-Negative) Surgical Site Infection after Spine Surgery. Infectious Disease Reports [Internet]. 2023 Nov 10 [cited 2025 Apr 27];15(6):717–25. Available from: https://www.mdpi.com/2036-7449/15/6/64 | |
dc.relation.references | 46. Worku S, Abebe T, Seyoum B, Alemu A, Shimelash Y, Yimer M, et al. Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus among Patients Diagnosed with Surgical Site Infection at Four Hospitals in Ethiopia. Antibiotics [Internet]. 2023 Nov 29 [cited 2025 Apr 27];12(12):1681. Available from: https://www.mdpi.com/2079-6382/12/12/1681 | |
dc.relation.references | 47. Thomas G, Thomas J, Tambi S, Chaudhry T, Almeida ND, Sherman JH. Impact of metabolic syndrome on morbidity and mortality following transforaminal interbody fusion (TLIF). Journal of Orthopaedics [Internet]. 2023 [cited 2025 Apr 27];46:102–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0972978X2300260X | |
dc.relation.references | 48. Naha U, Khurshudyan A, Vigneswaran HT, Mima M, Abern MR, Moreira DM. Perioperative outcomes in male patients undergoing cystectomy, radical colorectal procedure or total pelvic exenteration. Transl Androl Urol [Internet]. 2023 [cited 2025 Apr 27];12(11):1631–7. Available from: https://tau.amegroups.com/article/view/119351/html | |
dc.relation.references | 49. Yu KY, Kuang RK, Wu PP, Qiang GH. Subcutaneous fat thickness and abdominal depth are risk factors for surgical site infection after gastric cancer surgery. World J Clin Cases [Internet]. 2023 Nov 26 [cited 2025 Apr 27];11(33):8013–21. Available from: https://www.wjgnet.com/2307-8960/full/v11/i33/8013.htm | |
dc.relation.references | 50. Lapow JM, Lobao A, Kreinces J, Feingold J, Carr A, Sullivan T, et al. Predictors of in-hospital surgical site infections in surgically managed acetabular fractures: A nationwide analysis. Journal of Orthopaedics [Internet]. 2023 [cited 2025 Apr 27];45:48–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0972978X23002283 | |
dc.relation.references | 51. Wang JL, Wu XW, Wang SN, Liu X, Xiao B, Wang Y, et al. Factors influencing the surveillance of re-emerging intracranial infections in elective neurosurgical patients: A single-center retrospective study. World J Clin Cases [Internet]. 2023 Oct 6 [cited 2025 Apr 27];11(28):6680–7. Available from: https://www.wjgnet.com/2307-8960/full/v11/i28/6680.htm | |
dc.relation.references | 52. Bergström J, Möller Rydberg E, Wennergren D, Svensson Malchau K. Incidence and Risk Factors for Surgical Site Infection in Ankle Fractures: An Observational Study of 480 Patients in Sweden. JCM [Internet]. 2023 Oct 11 [cited 2025 Apr 27];12(20):6464. Available from: https://www.mdpi.com/2077-0383/12/20/6464 | |
dc.relation.references | 53. Im JH, Lee DY, Baek JH, Lee SJ, Jung S, Kim E, et al. Comparison of Cefazolin/Metronidazole to Ampicillin/Sulbactam as Preoperative Antibiotics in Colorectal Surgery: A Retrospective, Single-Center Cohort Study. Antibiotics [Internet]. 2023 Aug 29 [cited 2025 Apr 27];12(9):1381. Available from: https://www.mdpi.com/2079-6382/12/9/1381 | |
dc.relation.references | 54. Jiang L, Budu A, Khan MS, Goacher E, Kolias A, Trivedi R, et al. Predictors of Cerebrospinal Fluid Leak Following Dural Repair in Spinal Intradural Surgery. Neurospine [Internet]. 2023 Sep 30 [cited 2025 Apr 27];20(3):783–9. Available from: http://e-neurospine.org/journal/view.php?doi=10.14245/ns.2346432.216 | |
dc.relation.references | 55. Aldriwesh MG, Alnodley A, Almutairi N, Algarni M, Alqarni A, Albdah B, et al. Prevalence, Microbiological Profile, and Risk Factors of Surgical Site Infections in Saudi Patients with Colorectal Cancer. Saudi Journal of Medicine & Medical Sciences [Internet]. 2023 [cited 2025 Apr 27];11(3):208–18. Available from: https://journals.lww.com/10.4103/sjmms.sjmms_3_23 | |
dc.relation.references | 56. Kang HJ, Kwon YM, Byeon S ju, Kim HN, Sung IH, Subramanian SA, et al. Trends and Risk Factors for Surgical Site Infection after Treatment of the Ankle Fracture: National Cohort Study. JCM [Internet]. 2023 Jun 22 [cited 2025 Apr 27];12(13):4215. Available from: https://www.mdpi.com/2077-0383/12/13/4215 | |
dc.relation.references | 57. Öner Cengi̇Z H, Cengi̇Z H, Kiliç A, Altay M. Factors Affecting the Development of Surgical Site Infection Requiring Revision Surgery After Total Knee Arthroplasty: A Retrospective Case-Control Study. Bezmialem Science [Internet]. 2023 Jul 25 [cited 2025 Apr 27];11(3):280–8. Available from: https://bezmialemscience.org/articles/doi/bas.galenos.2023.49344 | |
dc.relation.references | 58. Abolfotouh SM, Khattab M, Zaman AU, Alnori O, Zakout A, Konbaz F, et al. Epidemiology of postoperative spinal wound infection in the Middle East and North Africa (MENA) region. North American Spine Society Journal (NASSJ) [Internet]. 2023 [cited 2025 Apr 27];14:100222. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666548423000240 | |
dc.relation.references | 59. Duey AH, White CA, Levy KH, Li T, Tang JE, Patel AV, et al. Diabetes increases risk for readmission and infection after shoulder arthroplasty: A national readmissions study of 113,713 patients. Journal of Orthopaedics [Internet]. 2023 [cited 2025 Apr 27];38:25–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0972978X23000582 | |
dc.relation.references | 60. Bischoff P, Kramer TS, Schröder C, Behnke M, Schwab F, Geffers C, et al. Age as a risk factor for surgical site infections: German surveillance data on total hip replacement and total knee replacement procedures 2009 to 2018. Eurosurveillance [Internet]. 2023 Mar 2 [cited 2025 Apr 27];28(9). Available from: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2023.28.9.2200535 | |
dc.relation.references | 61. Saadun H, Ismaeil D. Risk Factors of Superficial Surgical Site Infection in Open Appendectomy. J Babol Univ Med Sci [Internet]. 2023 Mar [cited 2025 Apr 27];25(1). Available from: https://doi.org/10.22088/jbums.25.1.397 | |
dc.relation.references | 62. Khan OH, Zakaria AD, Hashim MN, Khan AH, AlQarni A, AlGethamy M, et al. The Burden of Surgical Site Infection at Hospital Universiti Sains Malaysia and Related Postoperative Outcomes: A Prospective Surveillance Study. Antibiotics [Internet]. 2023 Jan 19 [cited 2025 Apr 27];12(2):208. Available from: https://www.mdpi.com/2079-6382/12/2/208 | |
dc.relation.references | 63. Soldevila-Boixader L, Viehöfer A, Wirth S, Waibel F, Yildiz I, Stock M, et al. Risk Factors for Surgical Site Infections in Elective Orthopedic Foot and Ankle Surgery: The Role of Diabetes Mellitus. JCM [Internet]. 2023 Feb 17 [cited 2025 Apr 27];12(4):1608. Available from: https://www.mdpi.com/2077-0383/12/4/1608 | |
dc.relation.references | 64. Ruffilli A, Manzetti M, Barile F, Ialuna M, Cerasoli T, Viroli G, et al. Complications after Posterior Lumbar Fusion for Degenerative Disc Disease: Sarcopenia and Osteopenia as Independent Risk Factors for Infection and Proximal Junctional Disease. JCM [Internet]. 2023 Feb 9 [cited 2025 Apr 28];12(4):1387. Available from: https://www.mdpi.com/2077-0383/12/4/1387 | |
dc.relation.references | 65. Zhou Y, Chen T, Yang C, Liu J, Yang X, Zhang B, et al. Risk factors associated with positive bacterial culture in salvaged red blood cells during cardiac surgery and postoperative infection incidence: A prospective cohort study. Front Med [Internet]. 2023 Feb 21 [cited 2025 Apr 27];10:1099351. Available from: https://www.frontiersin.org/articles/10.3389/fmed.2023.1099351/full | |
dc.relation.references | 66. Sigurdardottir M, Sigurdsson MI, Olafsson Y, Sverrisdottir SH, Gunnarsdottir I, Sigurdsson EL, et al. Prevalence of modifiable risk factors in primary elective arthroplasty and their association with infections. ActaO [Internet]. 2023 Feb 2 [cited 2025 Apr 27];94:38–44. Available from: https://actaorthop.org/actao/article/view/8480 | |
dc.relation.references | 67. Menendez Garcia M, Otermin Maya I, Librero Lopez J, Gutierrez Dubois J, Manrique Cuevas D, Alaez Cruz JI, et al. Effects of extended oral antibiotic prophylaxis on surgical site infections after instrumented spinal fusion: a cohort study of 901 patients with a minimum follow-up of 1 year. ActaO [Internet]. 2023 Feb 21 [cited 2025 Apr 27];94:80–6. Available from: https://actaorthop.org/actao/article/view/9409 | |
dc.relation.references | 68. Desta T, Lodamo T, Mulat H, Demissie DB, Ayalew K. Prevalence and associated factors of infection after intramedullary nailing of long bone fractures among patients attending St. Paul’s Hospital Millennium Medical College, AaBET Hospital, Addis Ababa, Ethiopia. SAGE Open Medicine [Internet]. 2023 [cited 2025 Apr 27];11:20503121231181650. Available from: https://journals.sagepub.com/doi/10.1177/20503121231181648 | |
dc.relation.references | 69. Akramuzzaman SM, Islam MS, Galib A. Risk Factors in Post Operative Wound Infections Following Elective Abdominal Operations. Med Today [Internet]. 2023 Apr 13 [cited 2025 Apr 27];35(1):56–62. Available from: https://www.banglajol.info/index.php/MEDTODAY/article/view/64943 | |
dc.relation.references | 70. Chen T, Liu C, Zhang Z, Liang T, Zhu J, Zhou C, et al. Using Machine Learning to Predict Surgical Site Infection After Lumbar Spine Surgery. IDR [Internet]. 2023 [cited 2025 Apr 27];Volume 16:5197–207. Available from: https://www.dovepress.com/using-machine-learning-to-predict-surgical-site-infection-after-lumbar-peer-reviewed-fulltext-article-IDR | |
dc.relation.references | 71. Patil SP, Goliwale FHH. Prevalence and risk factors of surgical site infections in general surgery patients: a cross-sectional study. [cited 2025 Apr 27]. Available from: https://www.academicmed.org/Uploads/Volume5Issue3/364.%20%5B917.%20JAMP_MEDP%5D%201833-1837.pdf | |
dc.relation.references | 72. Cianni L, Caredda M, De Fazio A, Basilico M, Greco T, Cazzato G, et al. Stress-Induced Hyperglycemia is a Risk Factor for Surgical-Site Infections in Nondiabetic Patients with Open Leg Fractures. Carl AL, editor. Advances in Orthopedics [Internet]. 2023 Oct 25 [cited 2025 Apr 27];2023:1–8. Available from: https://www.hindawi.com/journals/aorth/2023/6695648/ | |
dc.relation.references | 73. Singh K, Neti ML, Kanwar KS, Naveen E. Investigating factors affecting surgical site infections in abdominal surgeries: an observational analysis. [cited 2025 Apr 27]. Available from: https://academicmed.org/Uploads/Volume5Issue5/126.%20%5B1622.%20JAMP_PH%5D%20649-652.pdf | |
dc.relation.references | 74. Feng S, Xie X, An W, Gao B. Risk Factors and Outcome Analysis of Surgical Site Infections in Chinese Elderly Patients with Intestinal Obstruction after Emergency Surgery [Internet]. In Review; 2022 [cited 2025 Apr 28]. Available from: https://www.researchsquare.com/article/rs-1512577/v1 | |
dc.relation.references | 75. Shigematsu K, Samejima K, Kizaki Y, Matsunaga S, Nagai T, Takai Y. Factors associated with surgical-site infection after total laparoscopic hysterectomy. Laparoscopic, Endoscopic and Robotic Surgery [Internet]. 2022 [cited 2025 Apr 28];5(4):131–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S246890092200069X | |
dc.relation.references | 76. Wc C, Sa R, Zz D. Prevalence, Risk Factors and Microbiological Profile of Orthopaedic Surgical Site Infection in North-Eastern Peninsular Malaysia. Malays Orthop J [Internet]. 2022 Nov 1 [cited 2025 Apr 28];16(3):94–103. Available from: https://www.morthoj.org/2022/v16n3/surgical-site-infection.pdf | |
dc.relation.references | 77. Birhanu A, Amare HH, G/Mariam M, Girma T, Tadesse M, Assefa DG. Magnitude of surgical site infection and determinant factors among postoperative patients, A cross sectional study. Annals of Medicine & Surgery [Internet]. 2022 [cited 2025 Apr 28];83. Available from: https://journals.lww.com/10.1016/j.amsu.2022.104324 | |
dc.relation.references | 78. Zhang Z, Liu P, Wang W, Wang S, Li B, Li J, et al. Epidemiology and Drug Resistance of Fracture-Related Infection of the Long Bones of the Extremities: A Retrospective Study at the Largest Trauma Center in Southwest China. Front Microbiol [Internet]. 2022 Jul 12 [cited 2025 Apr 28];13:923735. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2022.923735/full | |
dc.relation.references | 79. Lin HH, Chou PH, Ma HH, Chang YW, Wang ST, Chang MC. Efficacy of Povidone Iodine Solution in the Prevention of Surgical Site Infections in Minimally Invasive Instrumented Spinal Fusion Surgery. Global Spine Journal [Internet]. 2022 [cited 2025 Apr 28];12(6):1058–65. Available from: https://journals.sagepub.com/doi/10.1177/2192568220975385 | |
dc.relation.references | 80. Gashaw A, Fantu S, Tarekegn M. Factor associated with surgical site infection of women who undergone cesarean section in Hawassa University comprehensive specialized hospital southern Ethiopia, retrospective study design. International Journal of Surgery Open [Internet]. 2022 [cited 2025 Apr 28];44:100506. Available from: https://journals.lww.com/10.1016/j.ijso.2022.100506 | |
dc.relation.references | 81. Skender K, Machowska A, Singh V, Goel V, Marothi Y, Lundborg CS, et al. Antibiotic Use, Incidence and Risk Factors for Orthopedic Surgical Site Infections in a Teaching Hospital in Madhya Pradesh, India. Antibiotics [Internet]. 2022 May 31 [cited 2025 Apr 29];11(6):748. Available from: https://www.mdpi.com/2079-6382/11/6/748 | |
dc.relation.references | 82. Onuzo CN, Sefogah PE, Nuamah MA, Ntumy M, Osei MM, Nkyekyer K. Surgical site infections following caesarean sections in the largest teaching hospital in Ghana. Infection Prevention in Practice [Internet]. 2022 [cited 2025 Apr 28];4(2):100203. Available from: https://linkinghub.elsevier.com/retrieve/pii/S259008892200004X | |
dc.relation.references | 83. Rucinski K, Stannard JP, Leary EV, Cook JL. Incidence and Cost of Surgical Site Infections After Osteochondral Allograft Transplantation and Meniscal Allograft Transplantation in the Knee. Orthopaedic Journal of Sports Medicine [Internet]. 2022 Mar 1 [cited 2025 Apr 28];10(3):23259671221084700. Available from: https://journals.sagepub.com/doi/10.1177/23259671221084701 | |
dc.relation.references | 84. Weisberg MD, Swiggett SJ, Ashraf AM, Horn AR, Vakharia RM, Choueka J. Comparison study of patient demographics and risk factors for infections following primary total elbow arthroplasty. Seminars in Arthroplasty: JSES [Internet]. 2022 [cited 2025 Apr 28];32(1):107–15. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1045452721001012 | |
dc.relation.references | 85. Page S., Pande R., Pusdekar V., Javalekar P.Clinico-etiological profile of surgical site infections at a tertiary care center: A cross sectional study.NeuroQuantology. [Internet]. 2022 [cited 2025 Apr 28];32(1):107–15. Available from:https://www.embase.com/records?subaction=viewrecord&id=L2017915690 | |
dc.relation.references | 86. Yang J, Zhang B, Qu C, Liu L, Song Y. Analysis of Risk Factors for Sternal Wound Infection After Off-Pump Coronary Artery Bypass Grafting. IDR [Internet]. 2022 [cited 2025 Apr 29];Volume 15:5249–56. Available from: https://www.dovepress.com/analysis-of-risk-factors-for-sternal-wound-infection-after-off-pump-co-peer-reviewed-fulltext-article-IDR | |
dc.relation.references | 87. Hu H, Zhang J, Xie XG, Dai YK, Huang X. Identification of risk factors for surgical site infection after type II and type III tibial pilon fracture surgery. WJCC [Internet]. 2022 Jul 6 [cited 2025 Apr 28];10(19):6399–405. Available from: https://www.wjgnet.com/2307-8960/full/v10/i19/6399.htm | |
dc.relation.references | 88. Adwall L, Hultin H, Mani M, Norlén O. Prospective Evaluation of Complications and Associated Risk Factors in Breast Cancer Surgery. Franco P, editor. Journal of Oncology [Internet]. 2022 Sep 17 [cited 2025 Apr 28];2022:1–8. Available from: https://www.hindawi.com/journals/jo/2022/6601066/ | |
dc.relation.references | 89. Mahdavi F., Eghdam Z.R. The Incidence and Risk Factors of Surgical Wound Infection after Abdominal Hysterectomy in Cancerous Women. GMJ Medicine. [Internet]. 2021 [cited 2025 Apr 28];2022:1–8. Available from: https://www.embase.com/records?subaction=viewrecord&id=L2028436163 | |
dc.relation.references | 90. Bourget-Murray J, Bansal R, Soroceanu A, Piroozfar S, Railton P, Johnston K, et al. Assessment of risk factors for early-onset deep surgical site infection following primary total hip arthroplasty for osteoarthritis. J Bone Joint Infect [Internet]. 2021 Dec 8 [cited 2025 Apr 28];6(9):443–50. Available from: https://jbji.copernicus.org/articles/6/443/2021/ | |
dc.relation.references | 91. Youbong TJ, De Pontfarcy A, Rouyer M, Strazzula A, Chakvetadze C, Flateau C, et al. Bacterial Epidemiology of Surgical Site Infections after Open Fractures of the Lower Limb: A Retrospective Cohort Study. Antibiotics [Internet]. 2021 Dec 10 [cited 2025 Apr 28];10(12):1513. Available from: https://www.mdpi.com/2079-6382/10/12/1513 | |
dc.relation.references | 92. He X, Li D, Sun T, Dai Q, Hu M, Zhu Z, et al. Risk factors for surgical site infection after cesarean delivery in a rural area in China: A case–controlled study. Annals of Medicine and Surgery [Internet]. 2021 [cited 2025 Apr 28];72:103110. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2049080121010608 | |
dc.relation.references | 93. Forlenza EM, Wright-Chisem J, Cohn MR, Apostolakos JM, Agarwalla A, Fu MC, et al. Arthroscopic distal clavicle excision is associated with fewer postoperative complications than open. JSES International [Internet]. 2021 [cited 2025 Apr 28];5(5):856–62. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666638321001614 | |
dc.relation.references | 94. Panteli M, Vun JSH, West RM, Howard A, Pountos I, Giannoudis PV. Surgical Site Infection Following Intramedullary Nailing of Subtrochanteric Femoral Fractures. JCM [Internet]. 2021 Jul 28 [cited 2025 Apr 28];10(15):3331. Available from: https://www.mdpi.com/2077-0383/10/15/3331 | |
dc.relation.references | 95. Jung JP, Haunstein K, Müller HH, Fischer I, Neff A. Intensive Care as an Independent Risk Factor for Infection after Reconstruction and Augmentation with Autologous Bone Grafts in Craniomaxillofacial Surgery: A Retrospective Cohort Study. JCM [Internet]. 2021 Jun 9 [cited 2025 Apr 28];10(12):2560. Available from: https://www.mdpi.com/2077-0383/10/12/2560 | |
dc.relation.references | 96. Shanbhag ER, Veena P. Surgical Site Infections Following Cesarean Section: A Longitudinal Study. Journal of South Asian Federation of Obstetrics and Gynaecology [Internet]. 2021 Sep 9 [cited 2025 Apr 28];13(3):77–80. Available from: https://www.jsafog.com/doi/10.5005/jp-journals-10006-1889 | |
dc.relation.references | 97. Liu TW, Chiu CH, Chen ACY, Chang SS, Chan YS. Risk Factor Analysis for Infection after Medial Open Wedge High Tibial Osteotomy. JCM [Internet]. 2021 Apr 16 [cited 2025 Apr 28];10(8):1727. Available from: https://www.mdpi.com/2077-0383/10/8/1727 | |
dc.relation.references | 98. Stepanov IA, Beloborodov VA, Shameeva MA, Borisov EB. A scoring system to predict the risk of surgical site infections after spinal surgery. Coluna/Columna [Internet]. 2021 [cited 2025 Apr 28];20(3):212–6. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1808-18512021000300212&tlng=en | |
dc.relation.references | 99. Hassan R, El-Gilany AH, Abd Elaal AM, El-Mashad N, Azim DA. An overview of healthcare-associated infections in a tertiary care hospital in Egypt. Infection Prevention in Practice [Internet]. 2020 [cited 2025 Apr 28];2(3):100059. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2590088920300238 | |
dc.relation.references | 100. Kim LY, Halperin SJ, Grauer JN. Surgical site infection following isolated lumbar discectomy increases odds of revision lumbar surgery within first 6 months, but not beyond. The Spine Journal [Internet]. 2024 [cited 2025 Apr 29];24(8):1459–66. Available from: https://linkinghub.elsevier.com/retrieve/pii/S152994302400158X | |
dc.relation.references | 101. Durst C, Rajaee L, Chang K, Lee A, Rajaee S. Psoriasis Is a Risk Factor for Surgical Site Infection After Primary TKA. Clin Orthop Relat Res [Internet]. 2024 [cited 2025 Apr 28];482(7):1196–200. Available from: https://journals.lww.com/10.1097/CORR.0000000000003011 | |
dc.relation.references | 102. Chen KA, Joisa CU, Stem J, Guillem JG, Gomez SM, Kapadia MR. Improved Prediction of Surgical Site Infection after Colorectal Surgery Using Machine Learning. Diseases of the Colon & Rectum [Internet]. 2022 Nov 30 [cited 2025 Apr 28]; Available from: https://journals.lww.com/10.1097/DCR.0000000000002559 | |
dc.relation.references | 103. Greene B, Lagrotteria A, Tsang ME, Jayaraman S. Closed incision negative pressure wound therapy following pancreaticoduodenectomy for prevention of surgical site infections in high-risk patients. cjs [Internet]. 2023 Oct 24 [cited 2025 Apr 29];66(5):E507–12. Available from: http://www.canjsurg.ca/lookup/doi/10.1503/cjs.000723 | |
dc.relation.references | 104. Hicks A, Mazumder A, Moody R, Kumanan K, Behshad R. Clinical Characteristics of Gram-Negative Surgical Site Infections in Patients Treated With Mohs Micrographic Surgery: A Retrospective Analysis. Dermatol Surg [Internet]. 2023 [cited 2025 Apr 28];49(11):981–4. Available from: https://journals.lww.com/10.1097/DSS.0000000000003915 | |
dc.relation.references | 105. Rudic TN, Althoff AD, Kamalapathy P, Bachmann KR. Surgical Site Infection After Primary Spinal Fusion Surgery for Adolescent Idiopathic Scoliosis: An Analysis of Risk Factors From a Nationwide Insurance Database. Spine [Internet]. 2023 Apr 15 [cited 2025 Apr 28];48(8):E101–6. Available from: https://journals.lww.com/10.1097/BRS.0000000000004591 | |
dc.relation.references | 106. Rudic TN, Althoff AD, Kamalapathy P, Bachmann KR. Surgical Site Infection After Primary Spinal Fusion Surgery for Adolescent Idiopathic Scoliosis: An Analysis of Risk Factors From a Nationwide Insurance Database. Spine [Internet]. 2023 Apr 15 [cited 2025 Apr 28];48(8):E101–6. Available from: https://journals.lww.com/10.1097/BRS.0000000000004591 | |
dc.relation.references | 107. Li Z, Song L, Qin B, Li K, Shi Y, Wang H, et al. A predictive nomogram for surgical site infection in patients who received clean orthopedic surgery: a retrospective study. J Orthop Surg Res [Internet]. 2024 Jan 5 [cited 2025 Apr 28];19(1):38. Available from: https://josr-online.biomedcentral.com/articles/10.1186/s13018-023-04473-2 | |
dc.relation.references | 108. Utsumi M, Yamada T, Yamabe K, Katsura Y, Fukuchi N, Fukunaga H, et al. Differences in risk factors for surgical site infection between laparotomy and laparoscopy in gastrointestinal surgery. Takesue Y, editor. PLoS ONE [Internet]. 2022 Sep 19 [cited 2025 Apr 28];17(9):e0274887. Available from: https://dx.plos.org/10.1371/journal.pone.0274887 | |
dc.relation.references | 109. Dube M, Nour S, Shafee A, Lahart I, Carmichael A. A prospective evaluation of the American College of Surgeons Surgical Risk Calculator as a predictor of complications for breast surgery. annals [Internet]. 2022 [cited 2025 Apr 28];104(3):181–6. Available from: https://publishing.rcseng.ac.uk/doi/10.1308/rcsann.2021.0152 | |
dc.relation.references | 110. Erenberg M, Rotem R, Segal D, Yohay Z, Idan I, Yohay D, et al. Adhesion barriers and topical hemostatic agents are risk factors for post-cesarean section infections. Surgery [Internet]. 2021 [cited 2025 Apr 28];170(4):1120–4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0039606021002956 | |
dc.relation.references | 111. Zhang X, Wang Z, Chen J, Wang P, Luo S, Xu X, et al. Incidence and risk factors of surgical site infection following colorectal surgery in China: a national cross-sectional study. BMC Infect Dis [Internet]. 2020 [cited 2025 Apr 28];20(1):837. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-020-05567-6 | |
dc.relation.references | 112. Magboo R, Drey N, Cooper J, Byers H, Shipolini A, Sanders J. Predicting cardiac surgical site infection: development and validation of the Barts Surgical Infection Risk tool. Journal of Clinical Epidemiology [Internet]. 2020 [cited 2025 Apr 28];128:57–65. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0895435620306557 | |
dc.relation.references | 113. Sławek-Szmyt S, Araszkiewicz A, Grygier M, Szmyt K, Chmielewska-Michalak L, Seniuk W, et al. Predictors of Long-Term Infections After Cardiac Implantable Electronic Device Surgery ― Utility of Novel PADIT and PACE DRAP Scores ―. Circ J [Internet]. 2020 Sep 25 [cited 2025 Apr 28];84(10):1754–63. Available from: https://www.jstage.jst.go.jp/article/circj/84/10/84_CJ-20-0305/_article | |
dc.relation.references | 114. Hu J sen, Huang C bin, Mao S ming, Fang K hao, Wu Z yi, Zhao Y ming. Development of a nomogram to predict surgical site infection after closed comminuted calcaneal fracture. BMC Surg [Internet]. 2022 Aug 12 [cited 2025 Apr 28];22(1):313. Available from: https://bmcsurg.biomedcentral.com/articles/10.1186/s12893-022-01735-4 | |
dc.relation.references | 115. Bozzay JD, Walker PF, Schechtman DW, Shaikh F, Stewart L, Carson ML, et al. Risk factors for abdominal surgical site infection after exploratory laparotomy among combat casualties. J Trauma Acute Care Surg [Internet]. 2021 [cited 2025 Apr 28];91(2S):S247–55. Available from: https://journals.lww.com/10.1097/TA.000000000000310 | |
dc.relation.references | 116. Zhang B, Chen C. Comparison of Ventilator-Associated Pneumonia and Surgical Site Infection between Two Methods of Tracheostomy. Hussein AF, editor. Computational and Mathematical Methods in Medicine [Internet]. 2022 Jul 15 [cited 2025 Apr 28];2022:1–6. Available from: https://www.hindawi.com/journals/cmmm/2022/3186634/ | |
dc.relation.references | 117. Hoffman T, Shitrit P, Chowers M. Risk factors for surgical site infections following open versus laparoscopic colectomies: a cohort study. BMC Surg [Internet]. 2021 [cited 2025 Apr 28];21(1):376. Available from: https://bmcsurg.biomedcentral.com/articles/10.1186/s12893-021-01379-w | |
dc.relation.references | 118. Yang J, Zhang X, Liang W. A retrospective analysis of factors affecting surgical site infection in orthopaedic patients. J Int Med Res [Internet]. 2020 [cited 2025 Apr 28];48(4):0300060520907776. Available from: https://journals.sagepub.com/doi/10.1177/0300060520907776 | |
dc.relation.references | 119. Xu L, Zhu J, Wang X, Zeng G, Gao Z, Liu J. Clinical features and risk factors of surgical site infections in HIV-negative patients with cryptococcal meningitis underwent ventriculoperitoneal shunt operations: a retrospective study. BMC Infect Dis [Internet]. 2022 Sep 14 [cited 2025 Apr 28];22(1):736. Available from: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-022-07719-2 | |
dc.relation.references | 120. Carranza-Lira S, Serrano-Estrada FD, López-Muñoz E, Hernández-Jiménez LM, Chavarría-Olarte ME. Concentración de hemoglobina glucosilada en pacientes no diabéticas con y sin infección de sitio quirúrgico posterior a la histerectomía. CIRU [Internet]. 2020 May 4 [cited 2025 Apr 29];88(3):3376. Available from: https://www.cirugiaycirujanos.com/frame_esp.php?id=277 | |
dc.relation.references | 121. Yang L, Yi F, Xiong Z, Yang H, Zeng Y. Effect of preoperative hospital stay on surgical site infection in Chinese cranial neurosurgery. BMC Neurol [Internet]. 2023 Nov 17 [cited 2025 Apr 28];23(1):407. Available from: https://bmcneurol.biomedcentral.com/articles/10.1186/s12883-023-03431-z | |
dc.relation.references | 122. Swart O, Esterhuizen TM, Voss M. The role of treatment delays in surgical site infection after appendicectomy in a South African rural regional hospital. S Afr Med J [Internet]. 2021 Mar 2 [cited 2025 Apr 28];111(3):271. Available from: http://www.samj.org.za/index.php/samj/article/view/13222 | |
dc.relation.references | 123. Paasch C, Schildberg C, Lünse S, Heisler S, Meyer J, Kirbach J, et al. Optimal timing for antimicrobial prophylaxis to reduce surgical site infections: a retrospective analysis of 531 patients. Sci Rep [Internet]. 2023 Jun 9 [cited 2025 Apr 28];13(1):9405. Available from: https://www.nature.com/articles/s41598-023-36588-1 | |
dc.relation.references | 124. Wojnarski CM, Elgudin Y, Rubelowsky JJ, Wilson BM, Donskey CJ, Cmolik BL. Emerging trends in mediastinitis: National Veterans Health Administration experience with methicillin-resistant Staphylococcus aureus prevention. The Journal of Thoracic and Cardiovascular Surgery [Internet]. 2021 [cited 2025 Apr 28];162(4):1125-1130.e1. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022522320305699 | |
dc.relation.references | 125. Friedericy HJ, Friedericy AF, De Weger A, Van Dorp ELA, Traversari RAAL, Van Der Eijk AC, et al. Effect of unidirectional airflow ventilation on surgical site infection in cardiac surgery: environmental impact as a factor in the choice for turbulent mixed air flow. Journal of Hospital Infection [Internet]. 2024 [cited 2025 Apr 28];148:51–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0195670124001026 | |
dc.relation.references | 126. Kvalvik SA, Rasmussen S, Thornhill HF, Baghestan E. Risk factors for surgical site infection following cesarean delivery: A hospital‐based case–control study. Acta Obstet Gynecol Scand [Internet]. 2021 [cited 2025 Apr 28];100(12):2167–75. Available from: https://obgyn.onlinelibrary.wiley.com/doi/10.1111/aogs.14235 | |
dc.relation.references | 127. Collaborative. Surgical site infection after gastrointestinal surgery in children: an international, multicentre, prospective cohort study. BMJ Glob Health [Internet]. 2020 [cited 2025 Apr 28];5(12):e003429. Available from: https://gh.bmj.com/lookup/doi/10.1136/bmjgh-2020-003429 | |
dc.relation.references | 128. Koshizaka M, Ishibashi R, Maeda Y, Ishikawa T, Maezawa Y, Takemoto M, et al. Predictive model and risk engine web application for surgical site infection risk in perioperative patients with type 2 diabetes. Diabetol Int [Internet]. 2022 [cited 2025 Apr 28];13(4):657–64. Available from: https://link.springer.com/10.1007/s13340-022-00587-w | |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | |
dc.rights.accessrights | http://purl.org/coar/access_right/c_14cb | |
dc.rights.local | Acceso cerrado | spa |
dc.subject | Infecciones | |
dc.subject | Modelos estadísticos | |
dc.subject | Procedimientos quirúrgicos operativos | |
dc.subject | Factores de riesgo | |
dc.subject.keywords | Infections | |
dc.subject.keywords | Models, statistical | |
dc.subject.keywords | Surgical procedures, operative | |
dc.subject.keywords | Risk factors | |
dc.subject.nlm | WO 162 | |
dc.title | Métodos para el análisis de infecciones del sitio quirúrgico (ISQ). Scoping Review | |
dc.title.translated | Methods for the analysis of surgical site infections (SSIs). Scoping Review | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
Archivos
Bloque original
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 445.52 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 172.99 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 acta de aprobacion.pdf
- Tamaño:
- 125.85 KB
- Formato:
- Adobe Portable Document Format
- Descripción: