Método de identificación automática de la retinopatía diabética en imágenes del fondo de ojo, utilizando técnicas de visión artificial
dc.contributor.advisor | Almeida Moreno, Javier Andres | |
dc.contributor.author | Guerrero Santana, Izabella | |
dc.date.accessioned | 2024-11-30T07:43:47Z | |
dc.date.available | 2024-11-30T07:43:47Z | |
dc.date.issued | 2024-11 | |
dc.description.abstract | La retinopatía diabética (RD) es una complicación de la diabetes que surge por el daño a los pequeños vasos sanguíneos de la retina debido a niveles elevados de azúcar en sangre. Dada la creciente prevalencia de la diabetes y el riesgo de ceguera asociado, es fundamental la detección temprana de la RD. Este trabajo presenta un enfoque automatizado para la identificación de los estadios de la retinopatía diabética, utilizando descomposición de momentos de Zernike sobre imágenes de fondo de ojo. El dataset utilizado fue una combinación de cuatro conjuntos de datos: EyePACS, APTOS 2019, APTOS 2019 (Gaussian Filtered) y Messidor Diabetic Retinopathy, compilados por Abdullah et al., (2024)}. La metodología incluyó el preprocesamiento de las imágenes, extracción de características con descriptores de forma, submuestreo para equilibrar las distribuciones de clase, y clasificación mediante una máquina de vectores de soporte (SVM) y una red neuronal densa. El modelo SVM logró una sensibilidad de 0,90 y una especificidad de 0,89 en la detección de casos sin retinopatía, mientras que la identificación de estadios leves y proliferativos presentó menores valores de precisión y recall (0,60 y 0,55, respectivamente). La red neuronal densa mostró un rendimiento inferior en comparación con la SVM. El aporte principal de este trabajo radica en la implementación de una técnica híbrida que combina descriptores de forma y modelos de clasificación para mejorar la detección automática de los diferentes estadios de la retinopatía diabética. | |
dc.description.abstractenglish | Diabetic retinopathy (DR) is a complication of diabetes that arises from damage to the small blood vessels of the retina due to elevated blood sugar levels. Given the increasing prevalence of diabetes and the associated risk of blindness, early detection of DR is critical. This paper presents an automated approach for the identification of diabetic retinopathy stages using Zernike moment decomposition on fundus images. The dataset used was a combination of four datasets: EyePACS, APTOS 2019, APTOS 2019 (Gaussian Filtered) and Messidor Diabetic Retinopathy. The methodology included image preprocessing, feature extraction with shape descriptors, subsampling to balance class distributions, and classification using a support vector machine (SVM) and a dense neural network. The SVM model achieved a sensitivity of 0.90 and a specificity of 0.89 in the detection of cases without retinopathy, while the identification of mild and proliferative stages presented lower precision and recall values (0.60 and 0.55, respectively). The dense neural network showed inferior performance compared to SVM. The main contribution of this work lies in the implementation of a hybrid technique that combines shape descriptors and classification models to improve the automatic detection of the different stages of diabetic retinopathy. | |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Bioingeniero | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | instname:Universidad El Bosque | spa |
dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
dc.identifier.repourl | https://repositorio.unbosque.edu.co | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/13499 | |
dc.language.iso | es | |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.publisher.grantor | Universidad El Bosque | spa |
dc.publisher.program | Bioingeniería | spa |
dc.relation.references | Acharya UR, Lim CM, Ng EYK, Chee C, Tamura T. Computer-based detection of diabetes retinopathy stages using digital fundus images. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2009;223(5):545-553. doi:10.1243/09544119JEIM486 | |
dc.relation.references | Agulia, J. (2017). Métodos de mejora de rendimiento para modelos de clasificación binaria en diagnóstico médico. https://openaccess.uoc.edu/bitstream/10609/64768/3/jaguilamaTFM0617memoria.pdf | |
dc.relation.references | Agustin, T. Purwidiantoro, H. Utami, E. Fatta, H. (2022). Convolutional neural network and suport vector machine combination for Multi-Class classification of Diabetic Retinopathy based on fundus images. DOI: http://dx.doi.org/10.35671/telematika.v15i2.2086 | |
dc.relation.references | Alvarez, M.Quirós, L. Cortés, M. (2020). Artificial intelligence and machine learning in medicine. Revista Médica SinergiaVol.5 Num,8, Agosto202. https://doi.org/10.31434/rms.v5i8.557 | |
dc.relation.references | Alwakid G, Gouda W, Humayun M. Deep Learning-Based Prediction of Diabetic Retinopathy Using CLAHE and ESRGAN for Enhancement. Healthcare (Basel). 2023 Mar 15;11(6):863. doi: 10.3390/healthcare11060863. PMID: 36981520; PMCID: PMC10048517. | |
dc.relation.references | Alyoubi, W. L., Abulkhair, M. F., \& Shalash, W. M. (2021). Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning. Sensors (Basel, Switzerland), 21(11), 3704. https://doi.org/10.3390/s21113704 | |
dc.relation.references | Arcadu, F., Benmansour, F., Maunz, A. et al. Deep learning algorithm predicts diabetic retinopathy progression in individual patients. npj Dígito. Medicina. 2, 92 (2019). https://doi.org/10.1038/s41746-019-0172-3 | |
dc.relation.references | Arias, L. (2021). Evaluación de modelos de Machine Learning para Sistemas de Detección de Intrusos en Redes IoT. Universidad de los Andes. https://repositorio.uniandes.edu.co/server/api/core/bitstreams/c6f1ea83-58d7-4eb6-a1ba-c3457306c054/content | |
dc.relation.references | APTOS 2019 blindness detection, (2021). https://www.kaggle.com/c/aptos2019-blindness-detection | |
dc.relation.references | Basaran, E. Gokmen, M. Mustafa, E. (2018). An Efficient Multiscale Scheme Using Local Zernike Moments for Face Recognition. http://dx.doi.org/10.3390/app8050827 | |
dc.relation.references | Birajdar, U., Gadhave, S., Chikodikar, S., Dadhich, S., \& Chiwhane, S. (2020). Detection and Classification of Diabetic Retinopathy Using AlexNet Architecture of Convolutional Neural Networks. In Proceeding of International Conference on Computational Science and Applications (pp. 245–253). https://doi.org/10.1007/978-981-15-0790-825 | |
dc.relation.references | Cattaneo, C. Larcher, L. Ruggeri, A. Herrera, A. Biasoni, E. (2011). MÉTODOS DE UMBRALIZACIÓN DE IMÁGENES DIGITALES BASADOS EN ENTROPIA DE SHANNON Y OTROS. Mecánica Computacional Vol XXX, págs. 2785-2805 (2011) | |
dc.relation.references | Centeno, A. (2019).Deep learning. https://idus.us.es/bitstream/handle/11441/90004/Centeno\%20Franco\%20Alba\%20TFG.pdf | |
dc.relation.references | Chauhan, R., Ghanshala, K. K.,\& Joshi, R. . (2018). Convolutional Neural Network (CNN) for Image Detection and Recognition. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). doi:10.1109/icsccc.2018.8703316 | |
dc.relation.references | Chawla, N. V. K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer. (2011). SMOTE: Synthetic Minority Over-sampling Technique. https://doi.org/10.48550/arXiv.1106.1813 | |
dc.relation.references | Chetoui, Mohamed, Moulav A. Akhloufi, and Mustanha Kardouchi. (2018) Diabetic retinopathy detection using machine learning and texture features. 2018 IEEE Canadian conference on electrical &\ computer engineering (CCECE). IEEE. | |
dc.relation.references | Dabian DA y Peña Moyano FY. Prevalencia y causas de ceguera y discapacidad visual en Colombia. Cienc Tecnol Salud Vis Ocul. 2020;(2): 21-30. doi: https://doi.org/10.19052/sv.vol18.iss2.3 | |
dc.relation.references | Decencière, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., ... \& Klein, J. C. (2014). Feedback on a publicly distributed image database: the Messidor database. Image Analysis \& Stereology, 33(3), 231-234. | |
dc.relation.references | Depaoli, R. Fernández, L. Diaz, D. (s.f). Optimización de la ecualización del histograma en el procesamiento de imágenes digitales. https://sedici.unlp.edu.ar/bitstream/handle/10915/21082/51.pdf?sequence=1 | |
dc.relation.references | Dey, A., &\ Dey, K. N. (2018) Automated glaucoma detection from fundus images of eye using statistical feature extraction methods and support vector machine classification. In Industry Interactive Innovations in Science, Engineering and Technology: Proceedings of the International Conference, I3SET 2016 (pp. 511-521). Springer Singapore. | |
dc.relation.references | Desiawan, M. Solichin, A. (2024). SVM Optimization with Grid Search Cross Validation for Improving Accuracy of Schizophrenia Classification Based on EEG Signal. Jurnal Teknik Informatika Vol. 17 No. 1, April 2024 (10-20) DOI: https://doi.org/10.15408/jti.v17i1.37422. | |
dc.relation.references | Domínguez, L. (2015). Desarrollo de un sistema de identificación y reconocimiento de pantlas utilizando técnicas de visión artificial. http://ri.uaemex.mx/bitstream/handle/20.500.11799/59238/Plantasclasificacion.pdf?sequence=1 | |
dc.relation.references | Dubey, S., Dixit, M. Recent developments on computer aided systems for diagnosis of diabetic retinopathy: a review. Multimed Tools Appl 82, 14471–14525 (2023). https://doi.org/10.1007/s11042-022-13841-9 | |
dc.relation.references | Du J, Zou B, Chen C, Xu Z, Liu Q (2020) Automatic microaneurysm detection in fundus image based on local cross-section transformation and multi-feature fusion. Comput Methods Prog Biomed 196:105687. https://doi.org/10.1016/j.cmpb.2020.105687 | |
dc.relation.references | Dutta, M. K., Parthasarathi, M., Ganguly, S., Ganguly, S.,\& Srivastava, K. (2017). An efficient image processing based technique for comprehensive detection and grading of nonproliferative diabetic retinopathy from fundus images. Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization, 5(3), 195–207. https://doi.org/10.1080/21681163.2015.105118 | |
dc.relation.references | E-ophtha. http://www.adcis.net/en/Download-Third-Party/E-Ophtha.html [accessed 08.01.18] | |
dc.relation.references | El Naqa, I., Murphy, M.J. (2015). What Is Machine Learning?. In: El Naqa, I., Li, R., Murphy, M. (eds) Machine Learning in Radiation Oncology. Springer Cham. https://doi.org/10.1007/978-3-319-18305-3 | |
dc.relation.references | Espinoza, A. (2019). PREVALENCIA DE RETINOPATÍA DIABÉTICA EN PACIENTES DIABÉTICOS DE RECIENTE DIAGNOSTICO EN UNA UNIDAD DE ALTA ESPECIALIDAD. | |
dc.relation.references | García, E. (2012). Visión artificial. FUOC Fundación para la Universitat Oberta de Catalunya. | |
dc.relation.references | Giraldo, J. Acosta, J. (2018). Caracterización de la retinopatía diabética en un programa de tamización en Medellín, Colombia, en el año 2018. Rev. mex. oftalmol vol.95 no.3 https://doi.org/10.24875/rmo.m21000169 | |
dc.relation.references | Ghosh, R., Ghosh, K., \& Maitra, S. (2017, February). Automatic detection and classification of diabetic retinopathy stages using CNN. In 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 550-554). IEEE. | |
dc.relation.references | Guo, J. Ma, J. García, A. Zhang, Y. Liang, H. (2023). A survey on image enhancement for Low-light images. Volume 9, Issue 4e14558April 2023. doi:0.1016/j.heliyon.2023.e14558 | |
dc.relation.references | G. Eason, B. Noble, and I. N. Sneddon, ``On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,'' Phil. Trans. Roy. Soc. London, vol. A247, pp. 529--551, April 1955. | |
dc.relation.references | Ferreiro, P. Pineda, O. Olvera, A. (2021). Análisis de técnicas para la detección y clasificación de la retinopatía diabética mediante imágenes digitales. | |
dc.relation.references | Fung, T. H., Patel, B., Wilmot, E. G., \& Amoaku, W. M. (2022). Diabetic retinopathy for the non-ophthalmologist. Clinical medicine (London, England), 22(2), 112–116. https://doi.org/10.7861/clinmed.2021-0792 | |
dc.relation.references | Haloi M (2015) "Improved microaneurysm detection using deep neural networks." arXiv preprint arXiv:1505.04424 | |
dc.relation.references | Herrero, M. (2020). Clasificación automática de la severidad de la Retinopatía Diabética mediante técnicas de Deep Learning. Recuperado de: https://uvadoc.uva.es/bitstream/handle/10324/50053/TFM-G1502.pdf?sequence=1\&isAllowed=y | |
dc.relation.references | Janiesch, C., Zschech, P. \& Heinrich, K. Machine learning and deep learning. Electron Markets 31, 685–695 (2021). https://doi.org/10.1007/s12525-021-00475-2 | |
dc.relation.references | Juan, R. Q., \& Mario, C. M. (2011). Redes neuronales artificiales para el procesamiento de imágenes, una revisión de la última década. RIEE\&C, Revista de Ingeniería Eléctrica, Electrónica y Computación, 9(1), 7-16. | |
dc.relation.references | Khojasteh P, Aliahmad B, Kumar DK (2019) A novel color space of fundus images for automatic exudates detection. Biomed Signal Process Control 49:240–249. https://doi.org/10.1016/j.bspc.2018.12.004 | |
dc.relation.references | Kumar, Y., Aggarwal, A., Tiwari, S., \& Singh, K. (2018). An efficient and robust approach for biomedical image retrieval using Zernike moments. Biomedical Signal Processing and Control, 39, 459–473. doi:10.1016/j.bspc.2017.08.018 | |
dc.relation.references | Kumar, S. \& Krishna, S. (2011). Enhancement of Diabetic Retinopathy Imagery Using Contrast Limited Adaptive Histogram Equalization. International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2694-2699 | |
dc.relation.references | Lechner, J. Olivia E. O'Leary, Alan W. Stitt. (2017). The pathology associated with diabetic retinopathy, Vision Research, Volume 139, 2017, Pages 7-14, ISSN 0042-6989, https://doi.org/10.1016/j.visres.2017.04.003. | |
dc.relation.references | Lin, K. Y., Hsih, W. H., Lin, Y. B., Wen, C. Y., \& Chang, T. J. (2021). Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. Journal of diabetes investigation, 12(8), 1322–1325. https://doi.org/10.1111/jdi.13480 | |
dc.relation.references | Liu, M., He, Y. (2007). Image zernike moments shape feature evaluation based on image reconstruction. Geo-spatial Information Science, 10(3), 191-195 (2007). | |
dc.relation.references | Long S, Chen J, Hu A, Liu H, Chen Z, Zheng D (2020) Microaneurysms detection in color fundus images using machine learning based on directional local contrast. Biomed Eng Online 19:1–23. https://doi.org/10.1186/s12938-020-00766-3 | |
dc.relation.references | Lubinus, F. Rueda, C. Marconi, B. Arias, Y. (2021). Redes neuronales convolucionales: un modelo de Deep Learning en imágenes diagnósticas. Revisión de tema. DOI: https://doi.org/10.53903/01212095.161 | |
dc.relation.references | Mansour, R.F. Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy. Biomed. Eng. Lett. 8, 41–57 (2018). https://doi.org/10.1007/s13534-017-0047-y | |
dc.relation.references | Martinez-Murcia, F. J., Ortiz, A., Ramírez, J., Górriz, J. M., \& Cruz, R. (2020). Deep residual transfer learning for automatic diagnosis and grading of diabetic retinopathy. Neurocomputing. https://doi.org/10.1016/j.neucom.2020.04.148 | |
dc.relation.references | MESSIDOR Dataset. http://www.adcis.net/en/Download-Third-Party/Messidor. html [accessed 08.01.18] | |
dc.relation.references | M. M. Butt, D. N. F. A. Iskandar, S. E. Abdelhamid, G. Latif, and R. Alghazo, “Diabetic Retinopathy Detection from Fundus Images of the Eye Using Hybrid Deep Learning Features,” Diagnostics, vol. 12, no. 7, p. 1607, Jul. 2022, doi: 10.3390/diagnostics12071607. | |
dc.relation.references | Muhammad, A. Mahoma, H. Zulfiqar, H. (2020). Review of Various Tasks Performed in the Preprocessing Phase of a Diabetic Retinopathy Diagnosis System. https://doi.org/10.2174/1573405615666190219102427 | |
dc.relation.references | Napgal, D., Panda S., Malarvel, M., Pattanaik P., Khan, M. (2022). A review of diabetic retinopathy: Datasets, approaches, evaluation metrics and future trends, Journal of King Saud University - Computer and Information Sciences, Volume 34, Issue 9, 2022, Pages 7138-7152, ISSN 1319-1578, https://doi.org/10.1016/j.jksuci.2021.06.006. | |
dc.relation.references | Nikos Tsiknakis, Dimitris Theodoropoulos, Georgios Manikis, Emmanouil Ktistakis, Ourania Boutsora, Alexa Berto, Fabio Scarpa, Alberto Scarpa, Dimitrios I. Fotiadis, Kostas Marias (2021). Deep learning for diabetic retinopathy detection and classification based on fundus images: A review, Computers in Biology and Medicine, Volume 135, 2021, 104599, ISSN 0010-4825, https://doi.org/10.1016/j.compbiomed.2021.104599. | |
dc.relation.references | Nguyen, T. T., Wang, J. J., Sharrett, A. R., Islam, F. A., Klein, R., Klein, B. E., ... \& Wong, T. Y. (2008). Relationship of retinal vascular caliber with diabetes and retinopathy: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes care, 31(3), 544-549. | |
dc.relation.references | Prada, L. (2018). PREVALENCE OF DIABETIC RETINOPATHY IN TYPE II DIABETICS IN A REFERRAL CENTER (CENTRAL POLICE HOSPITAL 2012 - 2017). UNIVERSIDAD DEL ROSARIO. SCHOOL OF MEDICINE AND HEALTH SCIENCES. | |
dc.relation.references | Ocampo Vélez, J. (2024). Módulo de software que implementa procesamiento digital de imágenes y técnicas de inteligencia artificial, para el análisis de imágenes en condiciones de baja luminosidad, para reconocimiento de presencia de personas. Trabajo de grado. Universidad de Antioquia, Medellín | |
dc.relation.references | Orellana, E. \& Duran, C. (2012). Introducci´on al desarrollo de GUI’s mediante Qt. | |
dc.relation.references | O'Shea, K., \& Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458. | |
dc.relation.references | Romero, M. Huerfano, L. Acero, G. López, G. Escaf, L. (2014). Análisis de la Salud Visual de los Colombianos 2011-2012. Rev. Sociedad Colombiana de Oftalmología Vol. 47 (3): 202 - 214, 2014 | |
dc.relation.references | Roy, A. Chakraborty, S. (2023). Support vector machine in structural reliability analysis: A review. https://doi.org/10.1016/j.ress.2023.109126 | |
dc.relation.references | Saranya, P., \& Prabakaran, S. (2020). Automatic detection of non-proliferative diabetic retinopathy in retinal fundus images using convolution neural network. Journal of Ambient Intelligence and Humanized Computing, 0123456789. https://doi.org/10.1007/s12652-020-02518-6 | |
dc.relation.references | Sánchez, K. (2011). Descriptores de imágenes digitales con momentos de Zernike.http://www.ptolomeo.unam.mx:8080/jspui/bitstream/132.248.52.100/4682/1/tesis.pdf | |
dc.relation.references | Selvaraj, G. Brindha S. (2022). Hyperparameters Optimization using Gridsearch Cross Validation Method for machine learning models in Predicting Diabetes Mellitus Risk. DOI:10.1109/IC3IOT53935.2022.9768005 | |
dc.relation.references | Serna, N. Román, U. (2009). Técnicas de Segmentación en Procesamiento Digital de Imágenes. https://sisbib.unmsm.edu.pe/bibvirtual/publicaciones/risi/2009n2/v6n2/a02v6n2.pdf | |
dc.relation.references | Simó-Servat O, Hernández C, Simó R. Diabetic Retinopathy in the Context of Patients with Diabetes. Ophthalmic Res. 2019;62(4):211-217. doi: 10.1159/000499541. Epub 2019 May 24. PMID: 31129667. | |
dc.relation.references | S. Gayathri, P. Gopi, and P. Ponnusamy. “A lightweight CNN for Diabetic Retinopathy classification from fundus images.” Biomed. Signal Process. Control. 62, 2020. doi:10.1016/j.bspc.2020.102115 | |
dc.relation.references | Sonali, Sahu, S., Singh, A. K., Ghrera, S. P., & Elhoseny, M. (2018). An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE. Optics & Laser Technology. doi:10.1016/j.optlastec.2018.06.061 10.1016/j.optlastec.2018.06.061 | |
dc.relation.references | Suarez Flórez LE, Chavarriaga Ríos MC. (2014) Prevalencia de diabetes mellitus autoreportada y factores asociados en los adultos de 60-64 años de Medellín y área metropolitana, participantes en la encuesta nacional de demografía y salud y la encuesta de situación de salud. Revista CES Salud Pública. 2014;5(1):21-37. | |
dc.relation.references | Sucar, L. (2015). Visión computacional. https://www.researchgate.net/publication/267295870 | |
dc.relation.references | Villa, M. Sánchez, Y. Raul, E. (2017). Fundamentos de la reducción de ruido en imágenes. Vol. 3 no. 2, Verano de la Investigación Científica, 2017 | |
dc.relation.references | Tsiknakis, N., Theodoropoulos, D., Manikis, G., Ktistakis, E., Boutsora, O., Berto, A., … Marias, K. (2021). Deep learning for diabetic retinopathy detection and classification based on fundus images: A review. Computers in Biology and Medicine, 135, 104599. doi:10.1016/j.compbiomed.2021.104599 | |
dc.relation.references | Wahab Sait, A.R. A Lightweight Diabetic Retinopathy Detection Model Using a Deep-Learning Technique. Diagnostics 2023, 13, 3120. https://doi.org/10.3390/diagnostics13193120. | |
dc.relation.references | Wee, C.-Y., \& Paramesran, R. (2007). On the computational aspects of Zernike moments. Image and Vision Computing, 25(6), 967–980. doi:10.1016/j.imavis.2006.07.010 | |
dc.relation.references | Winder, R. J., Morrow, P. J., McRitchie, I. N., Bailie, J. R., \& Hart, P. M. (2009). Algorithms for digital image processing in diabetic retinopathy. Computerized Medical Imaging and Graphics, 33(8), 608–622. doi:10.1016/j.compmedimag.2009.06.003 | |
dc.relation.references | Zong Y, Chen J, Yang L, Tao S, Aoma C, Zhao J, Wang S (2020) U-net based method for automatic hard exudates segmentation in fundus images using inception module and residual connection. IEEE Access 8:167225–167235. https://doi.org/10.1109/ACCESS.2020.3023273 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | http:/purl.org/coar/access_right/c_abf2/ | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Clasificación automática | |
dc.subject | Retinopatía diabética | |
dc.subject | Momentos de Zernike | |
dc.subject | Aprendizaje de máquina | |
dc.subject.ddc | 610.28 | |
dc.subject.keywords | Automatic classification | |
dc.subject.keywords | Diabetic retinopathy | |
dc.subject.keywords | Zernike's moments | |
dc.subject.keywords | Machine learning | |
dc.title | Método de identificación automática de la retinopatía diabética en imágenes del fondo de ojo, utilizando técnicas de visión artificial | |
dc.title.translated | Method for automatic identification of diabetic retinopathy in fundus images using machine vision techniques | |
dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
dc.type.coarversion | https://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |