Evaluación del efecto del calentamiento global utilizando escarabajos coprófagos como elementos bioindicadores a través del modelamiento en un gradiente altitudinal en la Sierra Nevada de Santa Marta, Magdalena-Colombia

dc.contributor.advisorNoriega Alvarado, Jorge Ari
dc.contributor.authorRincón Deaza, Julián Alfredo
dc.date.accessioned2025-06-03T21:01:44Z
dc.date.available2025-06-03T21:01:44Z
dc.date.issued2024-11
dc.description.abstractEn los sistemas naturales, las alteraciones en las relaciones sinérgicas entre los ámbitos ecológico, económico y social han generado cambios en la dinámica de los sistemas complejos, evidenciando la creciente relevancia del cambio climático. Este estudio analiza sus efectos sobre la diversidad biológica de escarabajos coprófagos en la Sierra Nevada de Santa Marta, utilizados como bioindicadores. Se compararon datos recolectados en 1999 con muestreos de 2019 a lo largo de un gradiente altitudinal de 400 a 2800 msnm. Se formuló una metodología que incluyó trampas de caída, monitoreo térmico, análisis en laboratorio y modelado de distribución futura mediante Maxent. Los resultados mostraron cambios en la riqueza, diversidad y composición de especies. En zonas bajas la riqueza disminuyó, mientras que en altitudes medias y altas aumentó, evidenciando un desplazamiento altitudinal. Esto sugiere una alteración en los rangos altitudinales de las especies como respuesta al cambio climático. El reemplazo de especies estuvo dominado por el Turnover, aunque en altitudes altas el componente Nestedness fue más relevante. El modelado de distribución mostró alta capacidad predictiva para Ontherus sanctamartae (AUC = 0.900) y Scybalocanthon darlingtoni (AUC = 0.888), con mayor presencia en altitudes intermedias y altas. Las variables más influyentes fueron los índices EVI y NDVI, lo que resalta su sensibilidad a las condiciones ambientales. Se concluye que es fundamental conservar zonas montañosas con climas estables en la Sierra Nevada de Santa Marta para proteger especies endémicas como S. darlingtoni y O. sanctamartae, bioindicadores clave del cambio climático. Se recomienda el monitoreo a largo plazo y su integración en planes de gestión ambiental.
dc.description.abstractenglishIn natural systems, alterations in the synergistic relationships between the ecological, economic and social spheres have generated changes in the dynamics of complex systems, evidencing the growing relevance of climate change. This study analyzes its effects on the biological diversity of coprophagous beetles in the Sierra Nevada de Santa Marta, used as bioindicators. Data collected in 1999 were compared with samples collected in 2019 along an altitudinal gradient from 400 to 2800 masl. A methodology was formulated that included pitfall traps, thermal monitoring, laboratory analysis and modeling of future distribution using Maxent. The results showed changes in species richness, diversity and composition. In low areas the richness decreased, while in middle and high altitudes it increased, evidencing an altitudinal shift. This suggests an alteration in the altitudinal ranges of species in response to climate change. Species replacement was dominated by Turnover, although at high altitudes the Nestedness component was more relevant. Distribution modeling showed high predictive capacity for Ontherus sanctamartae (AUC = 0.900) and Scybalocanthon darlingtoni (AUC = 0.888), with greater presence at intermediate and high altitudes. The most influential variables were the EVI and NDVI indices, highlighting their sensitivity to environmental conditions. It is concluded that it is essential to conserve mountainous areas with stable climates in the Sierra Nevada de Santa Marta to protect endemic species such as S. darlingtoni and O. sanctamartae, key bioindicators of climate change. Long-term monitoring and integration into environmental management plans is recommended.
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero Ambientalspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameinstname:Universidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/14547
dc.language.isoes
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programIngeniería Ambientalspa
dc.relation.referencesAcevedo Esbeile, A. (2020). La teoría de la diferenciación del Convenio Marco de las Naciones Unidas sobre el Cambio Climático y su relación con el régimen jurídico internacional de los derechos humanos. Revista de Derecho Ambiental, 14, 201. https://doi.org/10.5354/0719-4633.2020.54031
dc.relation.referencesAlademomi, A. S., Okolie, C. J., Daramola, O. E., Agboola, R. O., & Salami, T. J. (2020). Assessing the Relationship of LST, NDVI and EVI with Land Cover Changes in the Lagos Lagoon Environment. Quaestiones Geographicae, 39(3), 87–109. https://doi.org/10.2478/quageo-2020-0025
dc.relation.referencesBaselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x
dc.relation.referencesBaselga, A., & Orme, C. D. L. (2012). betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution, 3(5), 808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x
dc.relation.referencesBeynon, S. A., Wainwright, W. A., & Christie, M. (2015). The application of an ecosystem services framework to estimate the economic value of dung beetles to the U.K. cattle industry. Ecological Entomology, 40(S1). https://doi.org/10.1111/een.12240
dc.relation.referencesBicknell, J. E., Phelps, S. P., Davies, R. G., Mann, D. J., Struebig, M. J., & Davies, Z. G. (2014). Dung beetles as indicators for rapid impact assessments: Evaluating best practice forestry in the neotropics. Ecological Indicators, 43, 154–161. https://doi.org/https://doi.org/10.1016/j.ecolind.2014.02.030
dc.relation.referencesCannon, J. B., Warren, L. T., Ohlson, G. C., Hiers, J. K., Shrestha, M., Mitra, C., Hill, E. M., Bradfield, S. J., & Ocheltree, T. W. (2022). Applications of low-cost environmental monitoring systems for fine-scale abiotic measurements in forest ecology. Agricultural and Forest Meteorology, 321, 108973. https://doi.org/https://doi.org/10.1016/j.agrformet.2022.108973
dc.relation.referencesCarvajalino Slaghekke, A. (2018). Territorio e identidad en la Sierra Nevada de Santa Marta (Colombia). Revista Latina de Sociología, 8(3), 94–112. https://doi.org/10.17979/relaso.2018.8.3.3348
dc.relation.referencesCobos, M. E., Townsend Peterson, A., Barve, N., & Osorio-Olvera, L. (2019). Kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ, 2019(2). https://doi.org/10.7717/peerj.6281
dc.relation.referencesColares, C., Roza, A. S., Mermudes, J. R. M., Silveira, L. F. L., Khattar, G., Mayhew, P. J., Monteiro, R. F., Nunes, M. F. S. Q. C., & Macedo, M. V. (2021). Elevational specialization and the monitoring of the effects of climate change in insects: Beetles in a Brazilian rainforest mountain. Ecological Indicators, 120, 106888. https://doi.org/https://doi.org/10.1016/j.ecolind.2020.106888
dc.relation.referencesComité Coordinador del PNACC. (2016). Plan Nacional De Adaptación Al Cambio Climático. https://www.minambiente.gov.co/cambio-climatico-y-gestion-del-riesgo/plan-nacional-de-adaptacion-al-cambio-climatico/
dc.relation.referencesCorte Constitucional Sentencia T-123 (April 16, 2024). https://www.corteconstitucional.gov.co/relatoria/2024/T-123-24.htm
dc.relation.referencesCugula, J. dos S., Araujo, R. A. de, Freire, L. S., Paschoal, J. P., Pontes, A. K. dos S., Morgado, C. do R. V., & Esteves, E. M. M. (2021). Análise temporal da recuperação de área de mineração em Paragominas pela técnica de regeneração natural por meio de índices de vegetação. Journal of Environmental Analysis and Progress, 6(4). https://doi.org/10.24221/jeap.6.4.2021.3676.379-395
dc.relation.referencesEdivar Morales Salinas, N. (2011). ¿Qué es un bioindicador? Aprendiendo a partir del ciclo de indagación guiada con macroinvertebrados bentónicos. Propuesta Metodológica. https://repositorio.unal.edu.co/handle/unal/19984
dc.relation.referencesFatah, A. M. A., Zalat, S., Elbanna, S. M., Al-Khalaf, A. A., & Nasser, M. (2023). Climate Change and the Dung Beetle: Evaluation of Global Warming Impact on the Distribution of Phyllognathus excavatus (Forster, 1771) through the Mediterranean Region. Applied Sciences, 13(22), 12107. https://doi.org/10.3390/app132212107
dc.relation.referencesFattorini, S. (2024). Upward and Poleward (but Not Phenological) Shifts in a Forest Tenebrionid Beetle in Response to Global Change in a Mediterranean Area. Insects, 15(4), 242. https://doi.org/10.3390/insects15040242
dc.relation.referencesFick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12). https://doi.org/10.1002/joc.5086
dc.relation.referencesFordham, D. A., Jackson, S. T., Brown, S. C., Huntley, B., Brook, B. W., Dahl-Jensen, D., Gilbert, M. T. P., Otto-Bliesner, B. L., Svensson, A., Theodoridis, S., Wilmshurst, J. M., Buettel, J. C., Canteri, E., McDowell, M., Orlando, L., Pilowsky, J. A., Rahbek, C., & Nogues-Bravo, D. (2020). Using paleo-archives to safeguard biodiversity under climate change. Science, 369(6507), eabc5654. https://doi.org/10.1126/science.abc5654
dc.relation.referencesGao, Y., Gao, X., & Zhang, X. (2017). The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering, 3(2), 272–278. https://doi.org/https://doi.org/10.1016/J.ENG.2017.01.022
dc.relation.referencesGaudiano, E. J. G., & Cartea, P. A. M. (2020). Educacion para el cambio climatico ¿Educar sobre el clima o para el cambio? Perfiles Educativos, 42(168), 157–174. https://doi.org/10.22201/IISUE.24486167E.2020.168.59464
dc.relation.referencesGebert, F., Steffan‐Dewenter, I., Moretto, P., & Peters, M. K. (2020). Climate rather than dung resources predict dung beetle abundance and diversity along elevational and land use gradients on Mt. Kilimanjaro. Journal of Biogeography, 47(2), 371–381. https://doi.org/10.1111/jbi.13710
dc.relation.referencesGutiérrez Hernández, O., Cámara Artigas, R., Senciales González, J. M., & García, L. V. (2018). Modelos predictivos en Biogeografía: aplicación para la modelización de nichos ecológicos en Geografía Física. Boletín de La Asociación de Geógrafos Españoles, 78, 88–126. https://doi.org/10.21138/bage.2395
dc.relation.referencesHatfield, J. H., Harrison, M. L. K., & Banks-Leite, C. (2018). Functional Diversity Metrics: How They Are Affected by Landscape Change and How They Represent Ecosystem Functioning in the Tropics. Current Landscape Ecology Reports, 3(2), 35–42. https://doi.org/10.1007/s40823-018-0032-x
dc.relation.referencesHernández Camacho, J., Hurtado Guerra, A., Ortíz Quijano, R., & Walschburger, T. (1992). Unidades biogeográficas de Colombia. La Diversidad Biológica de Iberoamérica Acta Zoológica Mexicana, Volumen especial, 105–151.
dc.relation.referencesHernández Cardona, D. (2023). La gestión integral de la biodiversidad y sus servicios ecosistémicos para la gestión del riesgo y el cambio climático. In Investigaciones en gestión del riesgo de desastres para Colombia. Contribuciones locales, regionales y nacional. (pp. 280–298). https://books.google.com.mx/books?hl=es&lr=&id=5kjAEAAAQBAJ&oi=fnd&pg=PA265&dq=Articulaci%C3%B3n+de+la+biodiversidad+y+sus+servicios+ecosist%C3%A9micos+en+la+gesti%C3%B3n+del+riesgo+de+desastres.&ots=Vmqno9BpLH&sig=md2bxnW-u-zWlapUkgrG-Hdqn6E#v=onepage&q=Articulaci%C3%B3n%20de%20la%20biodiversidad%20y%20sus%20servicios%20ecosist%C3%A9micos%20en%20la%20gesti%C3%B3n%20del%20riesgo%20de%20desastres.&f=false
dc.relation.referencesHernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, M. del P. (2014). Metodología de la Investigación.
dc.relation.referencesHijmans, R. J., & Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12(12). https://doi.org/10.1111/j.1365-2486.2006.01256.x
dc.relation.referencesHodkinson, I. D. (2005). Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews, 80(3), 489–513. https://doi.org/10.1017/S1464793105006767
dc.relation.referencesHsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity ( <scp>H</scp> ill numbers). Methods in Ecology and Evolution, 7(12), 1451–1456. https://doi.org/10.1111/2041-210X.12613
dc.relation.referencesHuang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1–6. https://doi.org/10.1007/s11676-020-01155-1
dc.relation.referencesIPCC. (2023). Biodiversity Hotspots. In I. P. on C. C. (IPCC) (Ed.), Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2123–2162). Cambridge University Press. https://doi.org/DOI: 10.1017/9781009325844.018
dc.relation.referencesIPPC. (2014). Summary for Policymakers. In I. P. on C. C. (IPCC) (Ed.), Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1–30). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9781107415324.004
dc.relation.referencesJimenez, R. B., Lane, K. J., Hutyra, L. R., & Fabian, M. P. (2022). Spatial resolution of Normalized Difference Vegetation Index and greenness exposure misclassification in an urban cohort. Journal of Exposure Science & Environmental Epidemiology, 32(2), 213–222. https://doi.org/10.1038/s41370-022-00409-w
dc.relation.referencesKumar, N., Singh, S. K., Mishra, V. N., Reddy, G. P. O., & Bajpai, R. K. (2018). Open-Source Satellite Data and GIS for Land Resource Mapping. In G. P. O. Reddy & S. K. Singh (Eds.), Geospatial Technologies in Land Resources Mapping, Monitoring and Management (pp. 185–200). Springer International Publishing. https://doi.org/10.1007/978-3-319-78711-4_10
dc.relation.referencesLey 1523 (2012). https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=47141
dc.relation.referencesMacedo, M. V., Monteiro, R. F., Flinte, V., Almeida‐Neto, M., Khattar, G., da Silveira, L. F. L., Araújo, C. de O., Araújo, R. de O., Colares, C., Gomes, C. V. S., Mendes, C. B., Santos, E. F., & Mayhew, P. J. (2018). Insect elevational specialization in a tropical biodiversity hotspot. Insect Conservation and Diversity, 11(3), 240–254. https://doi.org/10.1111/icad.12267
dc.relation.referencesMaldaner, M. E., Sobral-Souza, T., Prasniewski, V. M., & Vaz-de-Mello, F. Z. (2021). Effects of Climate Change on the Distribution of Key Native Dung Beetles in South American Grasslands. Agronomy, 11(10), 2033. https://doi.org/10.3390/agronomy11102033
dc.relation.referencesMartinez, A. de la I., & Labib, S. M. (2023). Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environmental Research, 220, 115155. https://doi.org/10.1016/j.envres.2022.115155
dc.relation.referencesMenéndez, R., González‐Megías, A., Jay‐Robert, P., & Marquéz‐Ferrando, R. (2014). Climate change and elevational range shifts: evidence from dung beetles in two <scp>E</scp> uropean mountain ranges. Global Ecology and Biogeography, 23(6), 646–657. https://doi.org/10.1111/geb.12142
dc.relation.referencesMora-Aguilar, E. F., Arriaga-Jiménez, A., Correa, C. M. A., da Silva, P. G., Korasaki, V., López-Bedoya, P. A., Hernández, M. I. M., Pablo-Cea, J. D., Salomão, R. P., Valencia, G., Vulinec, K., Edwards, F. A., Edwards, D. P., Halffter, G., & Noriega, J. A. (2023). Toward a standardized methodology for sampling dung beetles (Coleoptera: Scarabaeinae) in the Neotropics: A critical review. Frontiers in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1096208
dc.relation.referencesMuñiz Planas, O. E. (2024). Posiciones de la Alianza de Pequeños Estados Insulares en las negociaciones bajo la Convención Marco de las Naciones Unidas sobre el Cambio Climático, periodo 2016-2022. Política Internacional, VI(Nro. 2), 43–57. https://doi.org/https://doi.org/10.5281/zenodo.10855514
dc.relation.referencesMurga-Orrillo, H., Jorge, M. F. C., Abanto-Rodríguez, C., & Lobo, F. D. A. (2021). Altitudinal gradient and its influence on the edofoclimatic characteristics of tropical forests. Madera y Bosques, 27(3). https://doi.org/10.21829/myb.2021.2732271
dc.relation.referencesNink, S., Hill, J., Stoffels, J., Buddenbaum, H., Frantz, D., & Langshausen, J. (2019). Using Landsat and Sentinel-2 Data for the Generation of Continuously Updated Forest Type Information Layers in a Cross-Border Region. Remote Sensing, 11(20), 2337. https://doi.org/10.3390/rs11202337
dc.relation.referencesNoriega, J. A., March-Salas, M., Castillo, S., García-Q, H., Hortal, J., & Santos, A. M. C. (2021). Human perturbations reduce dung beetle diversity and dung removal ecosystem function. Biotropica, 53(3), 753–766. https://doi.org/10.1111/btp.12953
dc.relation.referencesNoriega, J. A., & Realpe, E. (2018). Altitudinal Turnover of Species in a Neotropical Peripheral Mountain System: A Case Study with Dung Beetles (Coleoptera: Aphodiinae and Scarabaeinae). Environmental Entomology, 47(6), 1376–1387. https://doi.org/10.1093/ee/nvy133
dc.relation.referencesNoriega, J. A., Santos, A. M. C., Calatayud, J., Chozas, S., & Hortal, J. (2021). Short- and long-term temporal changes in the assemblage structure of Amazonian dung beetles. Oecologia, 195(3), 719–736. https://doi.org/10.1007/s00442-020-04831-5
dc.relation.referencesOtavo, S. E., Parrado-Rosselli, Á., & Noriega, J. A. (2013). Superfamilia Scarabaeoidea (Insecta: Coleoptera) como elemento bioindicador de perturbación antropogénica en un parque nacional amazónico. In Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 61, Issue 2).
dc.relation.referencesPage, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, n160. https://doi.org/10.1136/bmj.n160
dc.relation.referencesPhillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
dc.relation.referencesPlatero Mejía, J. V., & Romero Mármol, M. E. (2023). Elaboración de mapas de flujo de calor y procesamiento de datos, utilizando imágenes satelitales e instrumentos de medición de temperatura. https://hdl.handle.net/20.500.14492/16958
dc.relation.referencesPrather, C. M., Pelini, S. L., Laws, A., Rivest, E., Woltz, M., Bloch, C. P., Del Toro, I., Ho, C. K., Kominoski, J., Newbold, T. A. S., Parsons, S., & Joern, A. (2013). Invertebrates, ecosystem services and climate change. Biological Reviews, 88(2). https://doi.org/10.1111/brv.12002
dc.relation.referencesPulido Herrera, L. A. (2009). Diversidad y distribución potencial de escarabajos coprófagos (Coleoptera: Scarabaeidae: Scarabaeinae) bajo escenarios de cambio climático en un paisaje fragmentado al Sur de Costa Rica [Tesis de Magister Scientiae en Manejo y Conservación de Bosques Naturales y Biodiversidad, Centro Agronómico Tropical De Investigación y Enseñanza]. https://repositorio.catie.ac.cr/handle/11554/66
dc.relation.referencesR Core Team. (2023). R: A language and environment for statistical computing. . R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
dc.relation.referencesRamírez Gutiérrez, J. M. (2019). Distribución altitudinal y tolerancia térmica de los escarabajos coprófagos en la Orinoquía colombiana. Villavicencio: Universidad de los Llanos, 2019. [Tesis de Pregrado, Universidad de los Llanos]. https://repositorio.unillanos.edu.co/handle/001/1476
dc.relation.referencesRogan, J., & Chen, D. (2004). Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in Planning, 61(4), 301–325. https://doi.org/10.1016/S0305-9006(03)00066-7
dc.relation.referencesSemeraro, T., Luvisi, A., Lillo, A. O., Aretano, R., Buccolieri, R., & Marwan, N. (2020). Recurrence Analysis of Vegetation Indices for Highlighting the Ecosystem Response to Drought Events: An Application to the Amazon Forest. Remote Sensing, 12(6), 907. https://doi.org/10.3390/rs12060907
dc.relation.referencesTimaná de la Flor, M., & Cuentas Romero, M. A. (2015). Biogeografía predictiva: técnicas de modelamiento de distribución de especies y su aplicación en el impacto del cambio climático. Espacio y Desarrollo, 27. https://doi.org/10.18800/espacioydesarrollo.201501.008
dc.relation.referencesTocco, C., Negro, M., Rolando, A., & Palestrini, C. (2013). Does natural reforestation represent a potential threat to dung beetle diversity in the Alps? Journal of Insect Conservation, 17(1), 207–217. https://doi.org/10.1007/s10841-012-9498-8
dc.relation.referencesTovar, H. L., Noriega, J. A., & Caraballo, P. (2016). Efecto de la ivermectina sobre la estructura del ensamble de escarabajos coprófagos (Coleoptera: Scarabaeidae: Aphodiinae-Scarabaeinae) en las sabanas colombianas de la región Caribe Ivermectin effect on the structure of the ensembles of dung beetles (Coleoptera: Scarabaeidae: Aphodiinae-Scarabaeinae) in the Colombian savannahs of the Caribbean region. Actual Biol, 38(105), 157–166. https://doi.org/10.17533/udea.acbi.v38n105a03
dc.relation.referencesValdovinos, C., Muñoz, M. D., Sandoval, N., Vásquez, D., & Olmos, V. (2010). Desastres naturales y biodiversidad: El caso del humedal costero Tubul-Raqui. Sociedad Hoy, 19, 33–51. https://www.redalyc.org/articulo.oa?id=90223044004
dc.relation.referencesvan Beek, L., Hajer, M., Pelzer, P., van Vuuren, D., & Cassen, C. (2020). Anticipating futures through models: the rise of Integrated Assessment Modelling in the climate science-policy interface since 1970. Global Environmental Change, 65, 102191. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2020.102191
dc.relation.referencesWeiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402
dc.relation.referencesWickham, H., François, R., Henry, L., & Müller, K. (2023). dplyr: A Grammar of Data Manipulation. R package version 1.1.3. Media. https://dplyr.tidyverse.org/
dc.relation.referencesWickham, Hadley. (2016). Ggplot2 : elegant graphics for data analysis. In Springer-Verlag New York. (Segunda edición, Vol. 35, Issue July). https://link-springer-com.ezproxy.unbosque.edu.co/book/10.1007/978-3-319-24277-4
dc.relation.referencesZaidi, S. M., Akbari, A., Abu Samah, A., Kong, N., & Gisen, J. (2017). Landsat-5 Time Series Analysis for Land Use/Land Cover Change Detection Using NDVI and Semi-Supervised Classification Techniques. Polish Journal of Environmental Studies, 26(6), 2833–2840. https://doi.org/10.15244/pjoes/68878
dc.relation.referencesZu, K., & Wang, Z. (2022). Research progress on the elevational distribution of mountain species in response to climate change. Biodiversity Science, 30(5), 21451. https://doi.org/10.17520/biods.2021451
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttps://purl.org/coar/access_right/c_abf2
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAlteración
dc.subjectCambio climático
dc.subjectEscarabajos coprófagos
dc.subjectRangos altitudinales
dc.subjectBioindicador
dc.subjectSierra Nevada de Santa Marta
dc.subject.ddc628
dc.subject.keywordsAlteration
dc.subject.keywordsClimate change
dc.subject.keywordsCoprophagous beetles
dc.subject.keywordsAltitudinal ranges
dc.subject.keywordsBioindicator
dc.subject.keywordsSierra Nevada de Santa Marta
dc.titleEvaluación del efecto del calentamiento global utilizando escarabajos coprófagos como elementos bioindicadores a través del modelamiento en un gradiente altitudinal en la Sierra Nevada de Santa Marta, Magdalena-Colombia
dc.title.translatedAssessment of the effect of global warming using coprophagous beetles as bioindicators beetles as bioindicators through modeling in an altitudinal gradient in the Sierra Nevada modeling in an altitudinal gradient in the Sierra Nevada de Santa Marta, Magdalena-Colombia
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa

Archivos

Bloque original
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
Trabajo de grado.pdf
Tamaño:
2.69 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
180.36 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Anexo 1 Acta de aprobacion.pdf
Tamaño:
262.87 KB
Formato:
Adobe Portable Document Format
Descripción: