Exposición ocupacional a nanomateriales y toxicidad reproductiva masculina: Un scoping review
| dc.contributor.advisor | Giraldo Luna, Clara Margarita | |
| dc.contributor.advisor | Garzón Leal , Diana Carolina | |
| dc.contributor.author | Guerrero Orcasitas, Viviana Estherchi | |
| dc.contributor.orcid | Guerrero Orcasitas, Viviana Estherchi [0009-0000-1761-2511] | |
| dc.date.accessioned | 2025-02-11T19:21:19Z | |
| dc.date.available | 2025-02-11T19:21:19Z | |
| dc.date.issued | 2025-01 | |
| dc.description.abstract | Introducción: Los nanomateriales (NMs) son materiales con al menos una dimensión comprendida entre 1 y 100 nanómetros, que presentan propiedades únicas, lo que los hace útiles en diversas industrias. Sin embargo, su creciente producción y uso llevan a riesgos potenciales para la salud, especialmente en el sistema reproductivo masculino debido a la exposición ocupacional. Objetivos: Realizar una revisión tipo Scoping para recopilar evidencia sobre los efectos tóxicos reproductivos de los NMs en trabajadores masculinos, las circunstancias involucradas en la exposición y las medidas de control propuestas. Métodos: Se llevó a cabo una búsqueda sistemática en bases de datos académicas (PubMed, Embase, Scopus, entre otras) utilizando la estrategia Población, Concepto y Contexto (PCC), siguiendo la metodología JBI y el protocolo PRISMA ScR. Se utilizó el software Rayyan® para el proceso de selección de estudios. Resultados: Se incluyeron 12 artículos que analizaron la exposición a nanomateriales en diferentes sectores. Los efectos tóxicos más reportados fueron respiratorios (66.67%) y cardiovasculares (50%), mientras que solo el 16.67% abordó la salud reproductiva. Se identificaron medidas de control como la eliminación de fuentes de exposición y la implementación de controles de ingeniería. Conclusión: La revisión resalta que, a pesar de la escasez de datos sobre los efectos reproductivos de la exposición ocupacional a NMs en humanos, las evidencias sugieren la necesidad de implementar medidas efectivas de control en el entorno laboral para proteger la salud reproductiva de los trabajadores. | |
| dc.description.abstractenglish | Introduction: Nanomaterials (NMs) are materials with at least one dimension between 1 and 100 nanometers, exhibiting unique properties that make them useful in multiple industries. However, their growing production and use pose potential health risks, particularly to the male reproductive system due to occupational exposure. Objectives: To conduct a scoping review to gather evidence on the reproductive toxic effects of NMs on male workers, the circumstances involved in exposure, and the proposed control measures. Methods: A systematic research was conducted in academic databases (PubMed, Embase, Scopus, among others) using the Population, Concept, and Context (PCC) framework, following the JBI methodology and the PRISMA ScR protocol. Rayyan® software was used for the study selection process. Results: Twelve articles analyzing exposure to nanomaterials in different domains were included. The most reported toxic effects were respiratory (66.67%) and cardiovascular (50%), while only 16.67% addressed reproductive health. Control measures identified included eliminating exposure sources and implementing engineering controls. Conclusion: The review highlights that, despite the scarcity of data on the reproductive effects of occupational exposure to NMs in humans, existing evidence underscores the need to implement effective control measures in the workplace to protect workers' reproductive health. | |
| dc.description.degreelevel | Especialización | spa |
| dc.description.degreename | Especialista en Seguridad y Salud en el Trabajo | spa |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | instname:Universidad El Bosque | spa |
| dc.identifier.reponame | reponame:Repositorio Institucional Universidad El Bosque | spa |
| dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12495/13925 | |
| dc.language.iso | es | |
| dc.publisher.faculty | Facultad de Medicina | spa |
| dc.publisher.grantor | Universidad El Bosque | spa |
| dc.publisher.program | Especialización en Seguridad y Salud en el Trabajo | spa |
| dc.relation.references | 1. Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2:1821–1871. doi: 10.1039/D0MA00807A. | |
| dc.relation.references | 2. Malik S, Muhammad K, Waheed Y. Nanotechnology: A Revolution in Modern Industry. Molecules [Internet]. [cited 2024 May 20] 2023;28. doi: 10.3390/molecules28020661. | |
| dc.relation.references | 3. Pandey G, Jain P. Assessing the nanotechnology on the grounds of costs, benefits, and risks. Beni Suef Univ J Basic Appl Sci. 2020;9:63. doi: 10.1186/s43088-020-00085-5. | |
| dc.relation.references | 4. Hodson L GC, Schulte P. Cincinnati. Continuing to protect the nanotechnology workforce: NIOSH nanotechnology research plan for 2018 - 2025. 2019; doi: 10.26616/NIOSHPUB2019116. | |
| dc.relation.references | 5. EU-OSHA. Manufactured nanomaterials in the workplace: risks and how to manage them [Internet]. 2019. Available from: https://oshwiki.osha.europa.eu/en/themes/manufactured-nanomaterials-workplace-risks-and-how-manage-them | |
| dc.relation.references | 6. Habas K, Demir E, Guo C, Brinkworth MH, Anderson D. Toxicity mechanisms of nanoparticles in the male reproductive system. Drug Metab Rev. 2021;53:604–617. doi: 10.1080/03602532.2021.1917597. | |
| dc.relation.references | 7. Souza MR, Mazaro-Costa R, Rocha TL. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. Science of The Total Environment. 2021;769:144354. doi: 10.1016/j.scitotenv.2020.144354. | |
| dc.relation.references | 8. Roco MC. National Nanotechnology Initiative at 20 years: enabling new horizons. Journal of Nanoparticle Research. 2023;25:197. doi: 10.1007/s11051-023-05829-9. | |
| dc.relation.references | 9. Chen Q, Riviere JE, Lin Z. Toxicokinetics, dose–response, and risk assessment of nanomaterials: Methodology, challenges, and future perspectives. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14. doi: 10.1002/wnan.1808. | |
| dc.relation.references | 10. Escanilla D, Albornoz C, Vilasau R, Beriestain F. Exposición laboral a nanomateriales - Un enfoque desde la higiene ocupacional [Internet]. NT 122 Año 2023. Instituto de Salud Pública. Ministerio de Salud de Chile; 2023. Available from: https://www.ispch.cl/wp-content/uploads/2024/02/NT-122-EXPOSICION-LABORAL-A-NANOMATERIALES-UN-ENFOQUE-DESDE-LA-HIGIENE-OCUPACIONAL.pdf | |
| dc.relation.references | 11. Bleeker EAJ, Swart E, Braakhuis H, Fernández Cruz ML, Friedrichs S, Gosens I, Herzberg F, Jensen KA, von der Kammer F, Kettelarij JAB, et al. Towards harmonisation of testing of nanomaterials for EU regulatory requirements on chemical safety – A proposal for further actions. Regulatory Toxicology and Pharmacology. 2023;139. doi: 10.1016/j.yrtph.2023.105360. | |
| dc.relation.references | 12. Saldívar L, Anzaldo M. Nanogobernanza y regulación de las NyN. Miradas desde América Latina. Mundo Nano Revista Interdisciplinaria en Nanociencias y Nanotecnología. 2021;15. doi: 10.22201/ceiich.24485691e.2022.28. | |
| dc.relation.references | 13. Galán Freyle N. En Colombia no hay regulación establecida para los nanomateriales. Noticias UniSimón - Universidad Simón Bolívar [Internet]. 2019 Sep 30 [cited 2024 May 31]; Available from: https://unisimon.edu.co/blog/en-colombia-no-hay-regulacion-establecida-para-los-nanomateriales/1703 | |
| dc.relation.references | 14. Journal Citation Report (SJR). Nanotechnology publications in Q1 journals [Internet]. 2023 [cited 2024 Jun 20]. Available from: https://statnano.com/report/s142 | |
| dc.relation.references | 15. Molina Ramírez N. La bioética: sus principios y propósitos, para un mundo tecnocientífico, multicultural y diverso. Revista Colombiana de Bioética [Internet]. 2013;8(2):18-37. Recuperado de: https://www.redalyc.org/articulo.oa?id=189230852003 | |
| dc.relation.references | 16. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;n71. doi: 10.1136/bmj.n71. | |
| dc.relation.references | 17. Schulte PA, Leso V, Niang M, Iavicoli I. Current state of knowledge on the health effects of engineered nanomaterials in workers: A systematic review of human studies and epidemiological investigations. Scand J Work Environ Health. 2019 May 1;45(3):217-238. doi: 10.5271/sjweh.3800. | |
| dc.relation.references | 18. López-Alonso M, Díaz-Soler B, Martínez-Rojas M, Fito-López C, Martínez-Aires MD. Management of occupational risk prevention of nanomaterials manufactured in construction sites in the eu. Int J Environ Res Public Health. 2020;17:1–27. doi: 10.3390/ijerph17249211 | |
| dc.relation.references | 19. Yavorovskiy O, Omelchuk S, Sokurenko L, Zinchenko T, Solokha N, Aleksiichuk V, Brukhno R. Environmental and occupational hazards of metal nanocompounds production and application: hygienic, clinical and toxicological aspects. Wiad Lek. 2019 Aug 31;72(8):1504-1511. PMID: 32012500. available from: https://pubmed.ncbi.nlm.nih.gov/32012500/ | |
| dc.relation.references | 20. Bessa MJ, Brandão F, Viana M, Gomes JF, Monfort E, Cassee FR, Fraga S, Teixeira JP. Nanoparticle exposure and hazard in the ceramic industry: an overview of potential sources, toxicity and health effects. Environ Res. 2020;184. doi: 10.1016/j.envres.2020.109297 | |
| dc.relation.references | 21. Chávez-Hernández JA, Velarde-Salcedo AJ, Navarro-Tovar G, Gonzalez C. Safe nanomaterials: from their use, application, and disposal to regulations. Nanoscale Adv. Royal Society of Chemistry. 2024;6(6): 1583–1610. https://doi.org/10.1039/d3na01097j | |
| dc.relation.references | 22. Rossnerova A, Pelclova D, Zdimal V, Rossner P, Elzeinova F, Vrbova K, Topinka J, Schwarz J, Ondracek J, Kostejn M, et al. The repeated cytogenetic analysis of subjects occupationally exposed to nanoparticles: A pilot study. Mutagenesis. 2019;34:253–263. doi: 10.1093/mutage/gez016. | |
| dc.relation.references | 23. Liu JY, Sayes CM. A toxicological profile of silica nanoparticles. Toxicol Res (Camb). Oxford University Press. 2022 Jul 16;11(4):565-582. doi: 10.1093/toxres/tfac038. | |
| dc.relation.references | 24. Hansa J, Merzenich H, Cascant Ortolano L, Klug SJ, Blettner M, Gianicolo E. Health risks of titanium dioxide (TiO2) dust exposure in occupational settings – A scoping review. Int J Hyg Environ Health. 2023; 252:114212. doi: 10.1016/j.ijheh.2023.114212. | |
| dc.relation.references | 25. Bendtsen KM, Bengtsen E, Saber AT, Vogel U. A review of health effects associated with exposure to jet engine emissions in and around airports. Environ Health. BioMed Central Ltd. 2021 Feb 6;20(1):10. doi: 10.1186/s12940-020-00690-y. | |
| dc.relation.references | 26. Kahl VFS, da Silva J. Inorganic elements in occupational settings: A review on the effects on telomere length and biology. Mutat Res Genet Toxicol Environ Mutagen. 2021;872. doi: 10.1016/j.mrgentox.2021.503418. | |
| dc.relation.references | 27. Aarzoo, Nidhi, Samim M. Palladium nanoparticles as emerging pollutants from motor vehicles: An in-depth review on distribution, uptake and toxicological effects in occupational and living environment. 2022 Jun 1:823:153787. doi: 10.1016/j.scitotenv.2022.153787. | |
| dc.relation.references | 28. Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. Wiley Interdiscip Rev Nanomed Nanobiotechnol. John Wiley and Sons Inc. 2022 Nov;14(6):e1804. doi: 10.1002/wnan.1804. | |
| dc.relation.references | 29. Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles‐induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing). 2023;4. doi: 10.1002/mco2.327. | |
| dc.relation.references | 30. Rehman N, Jabeen F, Asad M, Nijabat A, Ali A, Khan SU, Luna-Arias JP, Mashwani Z-R, Siddiqa A, Karthikeyan A, et al. Exposure to zinc oxide nanoparticles induced reproductive toxicities in male Sprague Dawley rats. Journal of Trace Elements in Medicine and Biology. 2024;83:127411. doi: 10.1016/j.jtemb.2024.127411. | |
| dc.relation.references | 31. Abdulhaq NA, Elnady DA, Abo El-atta HM, El-Morsi DA, Gad El-Hak SA. Assessment of reproductive toxicity of gold nanoparticles and its reversibility in male albino rats. Toxicol Res. 2024; 40:57–72. doi: 10.1007/s43188-023-00203-2. | |
| dc.relation.references | 32. Dantas G de PF, Ferraz FS, Coimbra JLP, Paniago RM, Dantas MSS, Lacerda SMSN, Procópio MS, Gonçalves MF, Furtado MH, Mendes BP, et al. The toxicity of superparamagnetic iron oxide nanoparticles induced on the testicular cells: In vitro study. NanoImpact. 2024; 35:100517. doi: 10.1016/j.impact.2024.100517. | |
| dc.relation.references | 33. Rocca MS, Foresta C, Ferlin A. Telomere length: lights and shadows on their role in human reproduction. Biol Reprod. 2019;100. doi: 10.1093/biolre/ioy208. | |
| dc.relation.references | 34. Alberto AR, Matos C, Carmona-Aparicio G, Iten M. Nanomaterials, a New Challenge in the Workplace. 2022;379–402. doi: 10.1007/978-3-030-88071-2_15. | |
| dc.relation.references | 35. Mourad Ouzzani, Hossam Hammady, Zbys Fedorowicz, and Ahmed Elmagarmid. Rayyan — a web and mobile app for systematic reviews. Systematic Reviews. 2016; 5:210. doi: 10.1186/s13643-016-0384-4. | |
| dc.rights | Attribution-NonCommercial-ShareAlike 4.0 International | en |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.accessrights | https://purl.org/coar/access_right/c_abf2 | |
| dc.rights.local | Acceso abierto | spa |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject | Nanomateriales | |
| dc.subject | Toxicidad reproductiva masculina | |
| dc.subject | Exposición ocupacional | |
| dc.subject.ddc | 658.38 | |
| dc.subject.keywords | Nanomaterials | |
| dc.subject.keywords | Male reproductive toxicity | |
| dc.subject.keywords | Occupational exposure | |
| dc.title | Exposición ocupacional a nanomateriales y toxicidad reproductiva masculina: Un scoping review | |
| dc.title.translated | Occupational exposure to nanomaterials and male reproductive toxicity: A scoping review | |
| dc.type.coar | https://purl.org/coar/resource_type/c_7a1f | |
| dc.type.coarversion | https://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
| dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
| dc.type.local | Tesis/Trabajo de grado - Monografía - Especialización |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 1.56 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 5 de 7
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
Cargando...
- Nombre:
- Carta de Autorizacion.pdf
- Tamaño:
- 216.57 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- Anexo Acta de aprobacion.pdf
- Tamaño:
- 224.94 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- Anexo 1 Diagrama de flujo PRISMA.pdf
- Tamaño:
- 95.65 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
Cargando...
- Nombre:
- Anexo 2 Figura Bases de datos.pdf
- Tamaño:
- 30.92 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
