Caracterización de los potenciales evocados relacionados con eventos olfativos (OERP) provenientes del bulbo olfatorio en personas saludables empleando aprendizaje automático no supervisado
dc.contributor.advisor | Cely Jiménez, Andrés | |
dc.contributor.author | Losada Cerquera, Daniela | |
dc.contributor.orcid | Losada Cerquera, Daniela [0000-0002-1838-3690] | |
dc.date.accessioned | 2024-05-06T19:33:41Z | |
dc.date.available | 2024-05-06T19:33:41Z | |
dc.date.issued | 2024-03-22 | |
dc.description.abstract | Las alteraciones olfativas y cognitivas se pueden identificar mediante la realización de test olfativos, los cuales se caracterizan en su mayoría por ser de tipo cualitativo. Numerosos estudios relacionan enfermedades neurodegenerativas y sistémicas graves con alteraciones en el olfato que se evidencian con mayor frecuencia en adultos mayores. El reto en el área de la salud es identificar marcadores preclínicos no invasivos que permita predecir mediante análisis de frecuencia y/o el tiempo de manera cuantitativa asociados a los eventos olfativos y sus alteraciones, por ello en esta investigación se plantea la implementación de aprendizaje computacional no supervisado K-meanspara la caracterización de los OERP en las señales electrobulbográficas (EBG) en el dominio del tiempo y en su densidad espectral (PSD power spectral density). | |
dc.description.abstractenglish | Olfactory and cognitive alterations can be identified by means of olfactory tests, which are mostly qualitative in nature. Numerous studies relate serious neurodegenerative and systemic diseases with olfactory alterations that are more frequently evidenced in older adults. The challenge in the health area is to identify non-invasive preclinical markers that allow to predict by means of frequency and/or time analysis in a quantitative way associated with olfactory events and their alterations, therefore in this research we propose the implementation of unsupervised computational learning K-means for the characterization of the OERP in the electrobulbographic signals (EBG) in the time domain and in its spectral density (spectral density). and their spectral density (PSD power spectral density). | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/12086 | |
dc.language.iso | es | |
dc.relation.references | Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adam, M., Gertych, A., & Tan, R. S. (2017). A deep convolutional neural network model to classify heartbeats. Computers in Biology and Medicine, 89, 389–396. https://doi.org/10.1016/j.compbiomed.2017.08.022 | |
dc.relation.references | Albaqami, H., Hassan, G. M., & Datta, A. (2023). Automatic Detection of Abnormal EEG Signals Using WaveNet and LSTM. Sensors, 23(13), 5960. https://doi.org/10.3390/s23135960 | |
dc.relation.references | Alfaro, L., Ballesteros, L., & Posada Mary. (2020). Alteraciones en el olfato y el gusto asociadas con la infección por SARS-CoV-2: una revisión. Acta de Otorrinolaringología & Cirugía de Cabeza y Cuello. https://doi.org/10.37076/acorl.v48i4.56544(2) | |
dc.relation.references | Ali, M., Pandey, R. K., Khatoon, N., Narula, A., Mishra, A., & Prajapati, V. K. (2017). Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09199-w | |
dc.relation.references | Aracena, C., Villena, F., Arias, F., & Dunstan, J. (2022). Applications of machine learning in healthcare. Revista Medica Clinica Las Condes, 33(6), 568–575. https://doi.org/10.1016/j.rmclc.2022.10.001 | |
dc.relation.references | Ávila-Tomás, J. F., Mayer-Pujadas, M. A., & Quesada-Varela, V. J. (2021). Artificial intelligence and its applications in medicine II: Current importance and practical applications. Atencion Primaria, 53(1), 81–88. https://doi.org/10.1016/j.aprim.2020.04.014 | |
dc.relation.references | Berkhin, P. (2006). Grouping multidimensional data. Recent advances in clustering. | |
dc.relation.references | Bonfils, P. (2008). Fisiología, exploración y trastornos de la olfacción. EMC-Otorrinolaringología, 37. https://www.sciencedirect.com/science/article/abs/pii/S1632347508703114 | |
dc.relation.references | Bowers, A., Gore, J. C., Wexler, B. E., Fulbright, R. K., Skudlarski, P., Lacadie, C. M., Warrenburg, S., Fulbright, R. K., Skudlarski, P., Lacadie, C. M., Warrenburg, S., Bowers, A. A., Gore, J. C., & Wexler, B. E. (1998). responses to pleasant and unpleasant odors. Functional MR imaging of regional brain Functional MR Imaging of Regional Brain Responses to Pleasant and Unpleasant Odors. In AJNR Am J Neuroradiol (Vol. 19, Issue 9). http://www.ajnr.org/content/19/9/ | |
dc.relation.references | Carrillo, B., Carrillo A, V., Astorga, A., Hormachea, D., & Resumen, F. 1. (2017). Diagnóstico en la patología del olfato: Revisión de la literatura Diagnosis in smell pathology: Literature review. In Rev. Otorrinolaringol. Cir. Cabeza Cuello (Vol. 77). | |
dc.relation.references | Carrobles, J. A. (2016). Bio/neurofeedback. Clinica y Salud, 27(3), 125–131. https://doi.org/10.1016/j.clysa.2016.09.003 | |
dc.relation.references | Chacón Martínez, J., Morales Puebla, J. M., & Antolín, J. A. J. (2005). PATOLOGÍA DE LA OLFACCIÓN. OLFATOMETRÍA. MANEJO DE LOS PROBLEMAS OLFATIVOS. | |
dc.relation.references | Chaná, P., & Júri, C. (2007). Déficit de la olfacción en la enfermedad de Parkinson: Un síntoma a considerar en la práctica clínica. | |
dc.relation.references | Cofré, A., Ricciardi, D., & Soler, G. (2015). Alteraciones del olfato asociadas a hipogonadismo hipogonadotrófico. Su importancia en la detección precoz. REVISTA FASO. | |
dc.relation.references | Daniel, L., Crusaley, R., Cárdenas-Valdez, J. R., Enrico Vázquez, G., De Jesús, M., Ortega, G., & Calvillo Téllez, A. (2019). Sistema de clasificación SVM de señales electromiográficas extraídas en un sistema embebido SVM Classification System of Electromyographic Signals Extracted in an Embedded System. In Research in Computing Science (Vol. 148, Issue 2). | |
dc.relation.references | Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. www.aaai.org | |
dc.relation.references | Fernández, M. Á. G. (2019). Artificial intelligence in cardiac imaging: The future is here. Revista Argentina de Cardiologia, 87(6), 469–473. https://doi.org/10.7775/rac.v87.i6.16997 | |
dc.relation.references | Fornazieri, M., de Rezende, F., & Pinto, T. (2010). Applicability of the university of pennsylvania smell identification test (SIT) in brazilians: pilot study. Braz J Otorhinolaryngol. | |
dc.relation.references | Fulbright, R. K., Skudlarski, P., Lacadie, C. M., Warrenburg, S., Bowers, A. A., Gore, J. C., & Wexler, B. E. (1998). responses to pleasant and unpleasant odors. Functional MR imaging of regional brain Functional MR Imaging of Regional Brain Responses to Pleasant and Unpleasant Odors. In AJNR Am J Neuroradiol (Vol. 19, Issue 9). http://www.ajnr.org/content/19/9/ | |
dc.relation.references | Galván, P., Fusillo, J., González, F., Vukujevic, O., Recalde, L., Rivas, R., Ortellado, J., Portillo, J., Borba, J., & Hilario, E. (2022). Feasibility of using artificial intelligence for screening COVID-19 patients in Paraguay. Revista Panamericana de Salud Publica/Pan American Journal of Public Health, 46. https://doi.org/10.26633/RPSP.2022.20 | |
dc.relation.references | Gómez-Díaz, M., Villalobos-Torres, A., Lara-Rendón, C., Juárez-Guerra, L., Castellanos-Nolasco, E., Ortiz-Gaucín, A., & Suarez Y Gómez, L. (2018a). Análisis de bioseñales: Enfoque técnico de la adquisición, procesamiento y sus aplicaciones. INNOVACIÓN Y DESARROLLO TECNOLÓGICO REVISTA DIGITAL, 10(2). | |
dc.relation.references | Gómez-Díaz, M., Villalobos-Torres, A., Lara-Rendón, C., Juárez-Guerra, L., Castellanos-Nolasco, E., Ortiz-Gaucín, A., & Suarez Y Gómez, L. (2018b). INNOVACIÓN Y DESARROLLO TECNOLÓGICO REVISTA DIGITAL Análisis de bioseñales: Enfoque técnico de la adquisición, procesamiento y sus aplicaciones. 10(2). | |
dc.relation.references | Guerrero Martínez, J. F. (2010). INGENIERÍA BIOMÉDICA Tema 2 Bioseñales 2.1. Introducción. | |
dc.relation.references | Guevara, G. L. (2016). CLASIFICACION DE SEÑALES DE ELECTROENCEFALOGRÁMA PARA DIAGNOSTICAR DEPRESION CLASSIFICATION OF EEG SIGNALS FOR DIAGNOSING DEPRESSION. | |
dc.relation.references | Han, J., Kamber, M., & Pei, J. (2011a). Data Mining. Concepts and Techniques, 3rd Edition (The Morgan Kaufmann Series in Data Management Systems). | |
dc.relation.references | Han, J., Kamber, M., & Pei, J. (2011b). Data Mining. Concepts and Techniques, 3rd Edition (The Morgan Kaufmann Series in Data Management Systems). | |
dc.relation.references | Hou, H. R., Meng, Q. H., & Sun, B. (2022a). A triangular hashing learning approach for olfactory EEG signal recognition. Applied Soft Computing, 118. https://doi.org/10.1016/j.asoc.2022.108471 | |
dc.relation.references | Hou, H. R., Meng, Q. H., & Sun, B. (2022b). A triangular hashing learning approach for olfactory EEG signal recognition. Applied Soft Computing, 118. https://doi.org/10.1016/j.asoc.2022.108471 | |
dc.relation.references | Hummel, T., Kobal, G., Gudziol, H., & Mackay-Sim, A. (2007). Normative data for the “Sniffin’’ Sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: An upgrade based on a group of more than 3,000 subjects.” European Archives of Oto-Rhino-Laryngology, 264(3), 237–243. https://doi.org/10.1007/s00405-006-0173-0 | |
dc.relation.references | IBM. (2021a). Conceptos básicos de ayuda de CRISP-DM. https://www.ibm.com/docs/es/spss-modeler/saas?topic=dm-crisp-help-overview | |
dc.relation.references | IBM. (2021b). Conceptos básicos de ayuda de CRISP-DM. https://www.ibm.com/docs/es/spss-modeler/saas?topic=dm-crisp-help-overview | |
dc.relation.references | Iravani, B., Arshamian, A., Ohla, K., Wilson, D. A., & Lundström, J. N. (2020a). Non-invasive recording from the human olfactory bulb. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14520-9 | |
dc.relation.references | Iravani, B., Arshamian, A., Ohla, K., Wilson, D. A., & Lundström, J. N. (2020b). Non-invasive recording from the human olfactory bulb. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14520-9 | |
dc.relation.references | Iravani, B., Arshamian, A., Schaefer, M., Svenningsson, P., & Lundström, J. N. (2021). A non-invasive olfactory bulb measure dissociates Parkinson’s patients from healthy controls and discloses disease duration. Npj Parkinson’s Disease, 7(1). https://doi.org/10.1038/s41531-021-00220-8 | |
dc.relation.references | Izquierdo-Domínguez, A., Rojas-Lechuga, M. J., Mullol, J., & Alobid, I. (2020). Olfactory dysfunction during COVID-19 pandemic. Medicina Clinica, 155(9), 403–408. https://doi.org/10.1016/j.medcli.2020.06.006 | |
dc.relation.references | J. A. F. Tresguerres, Orlando A. Mora Novaro, & José E. Sánchez Criado. (2005). Fisiologia humana (3a. ed.) (3a. ed). | |
dc.relation.references | Jain, A. K., Murty, M. N., & Flynn, P. J. (2000). Data Clustering: A Review. | |
dc.relation.references | Jorge Díaz-Ramírez. (2021). Aprendizaje Automático y Aprendizaje Profundo. Ingeniare. Revista Chilena de Ingeniería, 29(2), 182–183. https://www.mckinsey.com/business-functions/sustainability/our-insights/artificial-intelligence-and-the- | |
dc.relation.references | Jose, M., & Juan Ramirez. (2020). Procesamiento Embebido de P300 Basado en Red Neuronal Convolucional para Interfaz Cerebro-Computadora Ubicua. | |
dc.relation.references | Kamel, N., & Malik, A. S. (2015). EEG/ERP analysis : methods and applications. | |
dc.relation.references | Klemm, W. R., Lutes, S. D., Hendrix, D. V, & Warrenburg, S. (1992). Topographical EEG maps of human responses to odors. In Chemical Senses (Vol. 17, Issue 3). http://chemse.oxfordjournals.org/ | |
dc.relation.references | Kobal, G., Klimek, L., Wolfensberger, M., & Gudziol, H. (2000). Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. Eur Arch Otorhinolaryngol. | |
dc.relation.references | Krbot Skorić, M., Adamec, I., Jerbić, A. B., Gabelić, T., Hajnšek, S., & Habek, M. (2015a). Electroencephalographic Response to Different Odors in Healthy Individuals: A Promising Tool for Objective Assessment of Olfactory Disorders. Clinical EEG and Neuroscience, 46(4), 370–376. https://doi.org/10.1177/1550059414545649 | |
dc.relation.references | Krbot Skorić, M., Adamec, I., Jerbić, A. B., Gabelić, T., Hajnšek, S., & Habek, M. (2015b). Electroencephalographic Response to Different Odors in Healthy Individuals: A Promising Tool for Objective Assessment of Olfactory Disorders. Clinical EEG and Neuroscience, 46(4), 370–376. https://doi.org/10.1177/1550059414545649 | |
dc.relation.references | Lemuz-López, R., Gómez-López, W., Ayaquica-Martínez, I., & Guillén-Galván, C. (2014). Selección de Electrodos Basada en k-means para la Clasificación de Actividad Motora en EEG. | |
dc.relation.references | Liu, B., Chang, H., Peng, K., & Wang, X. (2022). An End-to-End Depression Recognition Method Based on EEGNet. Frontiers in Psychiatry, 13. https://doi.org/10.3389/fpsyt.2022.864393 | |
dc.relation.references | Loncaric, F., Camara, O., & Piella, G. (2021). La integración de la inteligencia artificial en el abordaje clínico del paciente: enfoque en la imagen cardiaca. Revista Española de Cardiología. https://doi.org/./j.recesp... | |
dc.relation.references | Lorena, M., Javier, S., & Alberto Calderón, M. P. (2020). Detección de patologías en señales biomédicas mediante técnicas de machine learning. | |
dc.relation.references | Lorig, T. S., & Schw Artz, G. E. (1988). Brain and odor: 1. Alteration of human EEG by odor administration. In Psychobiology /988 (Issue 3). | |
dc.relation.references | Losada, D. (2020). Caracterización de Potenciales EEG Olfativos en Personas Saludables. Universidad Antonio Nariño. | |
dc.relation.references | Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F. (2018). A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. In Journal of Neural Engineering (Vol. 15, Issue 3). Institute of Physics Publishing. https://doi.org/10.1088/1741-2552/aab2f2 | |
dc.relation.references | Martin, G. N. (1998a). Human electroencephalographic (EEG) response to olfactory stimulation: Two experiments using the aroma of food. International Journal of Psychophysiology, 30(3), 287–302. https://doi.org/10.1016/S0167-8760(98)00025-7 | |
dc.relation.references | Martin, G. N. (1998b). Human electroencephalographic (EEG) response to olfactory stimulation: Two experiments using the aroma of food. International Journal of Psychophysiology, 30(3), 287–302. https://doi.org/10.1016/S0167-8760(98)00025-7 | |
dc.relation.references | Masaoka, Y., Harding, I. H., Koiwa, N., Yoshida, M., Harrison, B. J., Lorenzetti, V., Ida, M., Izumizaki, M., Pantelis, C., & Homma, I. (2014). The neural cascade of olfactory processing: A combined fMRI-EEG study. Respiratory Physiology and Neurobiology, 204, 71–77. https://doi.org/10.1016/j.resp.2014.06.008 | |
dc.relation.references | Mazzola, M. (2021). Aplicación de la Inteligencia Artificial Geoespacial a la epidemiología medio ambiental. Universidad de Malaga. | |
dc.relation.references | Medina, A. (2015). Diagnóstico de Señales Biomédicas con Redes Neuronales Artificiales. | |
dc.relation.references | Meza, B. (n.d.). Clasificación de señales EMG. | |
dc.relation.references | Micó, P. (2005). Nuevos desarrollos y aplicaciones basados en métodos estocásticos para el agrupamiento no supervisado de latidos en señales electrocardiográficas. | |
dc.relation.references | Mjahad, A. (2017). Análisis de Señales Biomédicas para Aplicación de Terapias en la Fibrilación Ventricular Cardiaca. www.who.int/mediacentre/factsheets/fs317/es/. | |
dc.relation.references | Moein, S. T., Hashemian, S. M. R., Mansourafshar, B., Khorram-Tousi, A., Tabarsi, P., & Doty, R. L. (2020). Smell dysfunction: a biomarker for COVID-19. International Forum of Allergy and Rhinology, 10(8), 944–950. https://doi.org/10.1002/alr.22587 | |
dc.relation.references | Muñoz Gamboa, C., & Jiménez Cruz, J. (2008). Potenciales evocados y cognición Artemisa medigraphic en línea (Issue 1). www.medigraphic.com | |
dc.relation.references | Najarian, K. S. (n.d.). Biomedical Signal and Image Processing. | |
dc.relation.references | Namazi, H., Akrami, A., Nazeri, S., & Kulish, V. V. (2016). Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal. In BioMed Research International (Vol. 2016). Hindawi Limited. https://doi.org/10.1155/2016/5469587 | |
dc.relation.references | Noelia, A., & Cicchino, B. (2013). UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERÍA Tesis presentada para la obtención del grado de MAGISTER EN INGENIERÍA. | |
dc.relation.references | Organización Panamericana de la Salud. (2020). La OMS caracteriza a COVID-19 como una pandemia. | |
dc.relation.references | Pablo Antonio Stack Sánchez. (2021). Métodos de Aprendizaje Supervisado y no Supervisado para la Estimación de Microestructura Cerebral en Datos de DWMR. Centro de Investigación en Matemáticas, A.C. | |
dc.relation.references | Pause, B. M., Sojka, B., Krauel, K., & Ferstl, R. (1996). The nature of the late positive complex within the olfactory event- related potential (OERP). Psychophysiology, 33(4). https://doi.org/10.1111/j.1469-8986.1996.tb01062.x | |
dc.relation.references | Quarmley, M., Moberg, P. J., Mechanic-Hamilton, D., Kabadi, S., Arnold, S. E., Wolk, D. A., & Roalf, D. R. (2017). Odor Identification Screening Improves Diagnostic Classification in Incipient Alzheimer’s Disease. Journal of Alzheimer’s Disease, 55(4), 1497–1507. https://doi.org/10.3233/JAD-160842 | |
dc.relation.references | Rahayel, S., Frasnelli, J., & Joubert, S. (2012a). The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: A meta-analysis. Behavioural Brain Research, 231(1), 60–74. https://doi.org/10.1016/j.bbr.2012.02.047 | |
dc.relation.references | Rahayel, S., Frasnelli, J., & Joubert, S. (2012b). The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: A meta-analysis. Behavioural Brain Research, 231(1), 60–74. https://doi.org/10.1016/j.bbr.2012.02.047 | |
dc.relation.references | Rand, W. M. (1971). Objective Criteria for the Evaluation of Clustering Methods. In Source: Journal of the American Statistical Association (Vol. 66, Issue 336). | |
dc.relation.references | Rasheed, K., Qayyum, A., Qadir, J., Sivathamboo, S., Kwan, P., Kuhlmann, L., O’Brien, T., & Razi, A. (2020). Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. http://arxiv.org/abs/2002.01925 | |
dc.relation.references | Rasheed, M. A., Chand, P., Ahmed, S., Sharif, H., Hoodbhoy, Z., Siddiqui, A., & Hasan, B. S. (2021). Use of artificial intelligence on Electroencephalogram (EEG) waveforms to predict failure in early school grades in children from a rural cohort in Pakistan. PLoS ONE, 16(2 February). https://doi.org/10.1371/journal.pone.0246236 | |
dc.relation.references | Ribeiro, J. C., Simões, J., Silva, F., Silva, E. D., Hummel, C., Hummel, T., & Paiva, A. (2016). Cultural adaptation of the Portuguese version of the “Sniffin’’ Sticks" smell test: Reliability, validity, and normative data.” PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0148937 | |
dc.relation.references | Robles-Osorio, M. L., Corona, R., Morales, T., & Sabath, E. (2020). Enfermedad renal crónica y olfato. Nefrología, 40(2), 120–125. https://doi.org/10.1016/j.nefro.2019.04.009 | |
dc.relation.references | Sanei, S., & Chambers, J. A. (2007). EEG SIGNAL PROCESSING. | |
dc.relation.references | Sarmiento, J. F. (2024). Diagnostico diferencial de síndromes demenciales para el reconocimiento de Alzheimer en personas con déficit cognitivo leve: potenciales biomarcadores de señales EEG. Open Science Framework OSF. https://osf.io/ed6kh/?view_only=5679a4a07d964e578065a221d2f548dc | |
dc.relation.references | Schriever, V. A., Han, P., Weise, S., Hösel, F., Pellegrino, R., & Hummel, T. (2017). Time frequency analysis of olfactory induced EEG-power change. PLoS ONE, 12(10). https://doi.org/10.1371/journal.pone.0185596 | |
dc.relation.references | Singh, K. K. (Telecommunications professor), Elhoseny, M., Singh, A., & Elngar, A. A. (2021). Machine learning and internet of medical things in healthcare. | |
dc.relation.references | Sowndhararajan, K., & Kim, S. (2016). Influence of fragrances on human psychophysiological activity: With special reference to human electroencephalographic response. In Scientia Pharmaceutica (Vol. 84, Issue 4, pp. 724–751). MDPI AG. https://doi.org/10.3390/scipharm84040724 | |
dc.relation.references | Stoica, Petre., & Moses, R. L. (2005). Spectral analysis of signals. Pearson/Prentice Hall. | |
dc.relation.references | Subasi, A. (2019). Biomedical Signal Classification Methods. In Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques (pp. 277–434). Elsevier. https://doi.org/10.1016/b978-0-12-817444-9.00005-2 | |
dc.relation.references | Sudip, P. (2019). Biomedical engineering and its applications in healthcare. In Biomedical Engineering and its Applications in Healthcare. Springer Singapore. https://doi.org/10.1007/978-981-13-3705-5 | |
dc.relation.references | Sugawara, Y., Shigetho, A., Yoneda, M., Tuchiya, T., Yamada, H., Matumura, T., & Hirano, M. (2015). Relationship between Mood Change, Odor and Its Psychophysiological Responses in Humans in Terms of the Sensory Evaluation Spectrum. Psychology, 06(08), 965–988. https://doi.org/10.4236/psych.2015.68095 | |
dc.relation.references | Tompkins, W. J. (2000). BIOMEDICAL DIGITAL SIGNAL PROCESSING C-Language Examples and Laboratory Experiments for the IBM ® PC. | |
dc.relation.references | Tran, Y. (2020). EEG Signal Processing for Biomedical Applications. www.mdpi.com/journal/sensors | |
dc.relation.references | Tresguerres. (2005). Fisiologia humana (3a. ed.). | |
dc.relation.references | Tyler S. Lorig. (1999). On the similarity of odor and language perception. Neuroscience & Biobehavioral Reviews, 23(3), 391–398. | |
dc.relation.references | Vilela Junior, G. de B., Lima, B. N., Ribeiro, H. F., Rodrigues, M. F., Pereira, A. de A., Oliveira, J. R. L. de, Silio, L. F., & Passos, R. P. (2022). IMPORTÂNCIA DO ÍNDICE FOWLKES-MALLOWS (IMF), DO COEFICIENTE DE CORRELAÇÃO DE MATTHEWS (MCC) E DO ÍNDICE YOUDEN (IY) NOS CLASSIFICADORES DE INTELIGÊNCIA ARTIFICIAL NA ÁREA DA SAÚDE. Centro de Pesquisas Avançadas Em Qualidade de Vida, 14(v14n2), 1. https://doi.org/10.36692/v14n3-01 | |
dc.relation.references | Walla, P., Duregger, C., Deecke, L., & Dal-Bianco, P. (2011). Dysfunctional incidental olfaction in mild cognitive impairment (MCI): An electroencephalography (EEG) study. Brain Sciences, 1(1), 3–15. https://doi.org/10.3390/brainsci1010003 | |
dc.relation.references | Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., Bottani, S., Dormont, D., Durrleman, S., Burgos, N., & Colliot, O. (2020). Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical Image Analysis, 63. https://doi.org/10.1016/j.media.2020.101694 | |
dc.relation.references | Xing, M., Hu, S., Wei, B., & Lv, Z. (2022). Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition. Journal of Neuroscience Methods, 376. https://doi.org/10.1016/j.jneumeth.2022.109624 | |
dc.relation.references | Xuan Vinh, N., Epps, J., Cameron Bailey, J., Vinh Edu Au, N. X., Julien Epps, U., U Au, U. E., & Bailey, J. (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. In Journal of Machine Learning Research (Vol. 11). https://www.researchgate.net/publication/220320632_Information_Theoretic_Measures_for_Clusterings_Comparison_Variants_Properties_Normaliz | |
dc.relation.references | Yavuz, E., & Aydemir, O. (2016, September 19). Olfaction recognition by EEG analysis using wavelet transform features. Proceedings of the 2016 International Symposium on INnovations in Intelligent SysTems and Applications, INISTA 2016. https://doi.org/10.1109/INISTA.2016.7571827 | |
dc.relation.references | Zgallai, W. A. (2020). Biomedical signal processing and artificial intelligence in healthcare. | |
dc.relation.references | Zhang, X. N., Meng, Q. H., Zeng, M., & Hou, H. R. (2021). Decoding olfactory EEG signals for different odor stimuli identification using wavelet-spatial domain feature. Journal of Neuroscience Methods, 363. https://doi.org/10.1016/j.jneumeth.2021.109355 | |
dc.rights | Attribution-NoDerivatives 4.0 Internacional | esp |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | esp |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ | spa |
dc.subject | ERP olfativos | |
dc.subject | Aprendizaje automático | |
dc.subject | Señales EEG | |
dc.subject | Potenciales Evocados | |
dc.subject.keywords | Olfactory ERPs | |
dc.subject.keywords | Machine learning | |
dc.subject.keywords | Evoked potentials | |
dc.subject.keywords | EEG signals | |
dc.title | Caracterización de los potenciales evocados relacionados con eventos olfativos (OERP) provenientes del bulbo olfatorio en personas saludables empleando aprendizaje automático no supervisado | |
dc.title.translated | Characterization of olfactory event-related evoked potentials (OERPs) from the olfactory bulb of event-related evoked potentials (OERPs) from the olfactory bulb in healthy individuals using unsupervised machine learning |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Trabajo de grado.pdf
- Tamaño:
- 10.87 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 3 de 3
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- DANIELA LOSADA CERQUERA.pdf
- Tamaño:
- 152.1 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 337.86 KB
- Formato:
- Adobe Portable Document Format
- Descripción: