Caracterización de los potenciales evocados relacionados con eventos olfativos (OERP) provenientes del bulbo olfatorio en personas saludables empleando aprendizaje automático no supervisado

dc.contributor.advisorCely Jiménez, Andrés
dc.contributor.authorLosada Cerquera, Daniela
dc.contributor.orcidLosada Cerquera, Daniela [0000-0002-1838-3690]
dc.date.accessioned2024-05-06T19:33:41Z
dc.date.available2024-05-06T19:33:41Z
dc.date.issued2024-03-22
dc.description.abstractLas alteraciones olfativas y cognitivas se pueden identificar mediante la realización de test olfativos, los cuales se caracterizan en su mayoría por ser de tipo cualitativo. Numerosos estudios relacionan enfermedades neurodegenerativas y sistémicas graves con alteraciones en el olfato que se evidencian con mayor frecuencia en adultos mayores. El reto en el área de la salud es identificar marcadores preclínicos no invasivos que permita predecir mediante análisis de frecuencia y/o el tiempo de manera cuantitativa asociados a los eventos olfativos y sus alteraciones, por ello en esta investigación se plantea la implementación de aprendizaje computacional no supervisado K-meanspara la caracterización de los OERP en las señales electrobulbográficas (EBG) en el dominio del tiempo y en su densidad espectral (PSD power spectral density).
dc.description.abstractenglishOlfactory and cognitive alterations can be identified by means of olfactory tests, which are mostly qualitative in nature. Numerous studies relate serious neurodegenerative and systemic diseases with olfactory alterations that are more frequently evidenced in older adults. The challenge in the health area is to identify non-invasive preclinical markers that allow to predict by means of frequency and/or time analysis in a quantitative way associated with olfactory events and their alterations, therefore in this research we propose the implementation of unsupervised computational learning K-means for the characterization of the OERP in the electrobulbographic signals (EBG) in the time domain and in its spectral density (spectral density). and their spectral density (PSD power spectral density).
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12086
dc.language.isoes
dc.relation.referencesAcharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., Adam, M., Gertych, A., & Tan, R. S. (2017). A deep convolutional neural network model to classify heartbeats. Computers in Biology and Medicine, 89, 389–396. https://doi.org/10.1016/j.compbiomed.2017.08.022
dc.relation.referencesAlbaqami, H., Hassan, G. M., & Datta, A. (2023). Automatic Detection of Abnormal EEG Signals Using WaveNet and LSTM. Sensors, 23(13), 5960. https://doi.org/10.3390/s23135960
dc.relation.referencesAlfaro, L., Ballesteros, L., & Posada Mary. (2020). Alteraciones en el olfato y el gusto asociadas con la infección por SARS-CoV-2: una revisión. Acta de Otorrinolaringología & Cirugía de Cabeza y Cuello. https://doi.org/10.37076/acorl.v48i4.56544(2)
dc.relation.referencesAli, M., Pandey, R. K., Khatoon, N., Narula, A., Mishra, A., & Prajapati, V. K. (2017). Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09199-w
dc.relation.referencesAracena, C., Villena, F., Arias, F., & Dunstan, J. (2022). Applications of machine learning in healthcare. Revista Medica Clinica Las Condes, 33(6), 568–575. https://doi.org/10.1016/j.rmclc.2022.10.001
dc.relation.referencesÁvila-Tomás, J. F., Mayer-Pujadas, M. A., & Quesada-Varela, V. J. (2021). Artificial intelligence and its applications in medicine II: Current importance and practical applications. Atencion Primaria, 53(1), 81–88. https://doi.org/10.1016/j.aprim.2020.04.014
dc.relation.referencesBerkhin, P. (2006). Grouping multidimensional data. Recent advances in clustering.
dc.relation.referencesBonfils, P. (2008). Fisiología, exploración y trastornos de la olfacción. EMC-Otorrinolaringología, 37. https://www.sciencedirect.com/science/article/abs/pii/S1632347508703114
dc.relation.referencesBowers, A., Gore, J. C., Wexler, B. E., Fulbright, R. K., Skudlarski, P., Lacadie, C. M., Warrenburg, S., Fulbright, R. K., Skudlarski, P., Lacadie, C. M., Warrenburg, S., Bowers, A. A., Gore, J. C., & Wexler, B. E. (1998). responses to pleasant and unpleasant odors. Functional MR imaging of regional brain Functional MR Imaging of Regional Brain Responses to Pleasant and Unpleasant Odors. In AJNR Am J Neuroradiol (Vol. 19, Issue 9). http://www.ajnr.org/content/19/9/
dc.relation.referencesCarrillo, B., Carrillo A, V., Astorga, A., Hormachea, D., & Resumen, F. 1. (2017). Diagnóstico en la patología del olfato: Revisión de la literatura Diagnosis in smell pathology: Literature review. In Rev. Otorrinolaringol. Cir. Cabeza Cuello (Vol. 77).
dc.relation.referencesCarrobles, J. A. (2016). Bio/neurofeedback. Clinica y Salud, 27(3), 125–131. https://doi.org/10.1016/j.clysa.2016.09.003
dc.relation.referencesChacón Martínez, J., Morales Puebla, J. M., & Antolín, J. A. J. (2005). PATOLOGÍA DE LA OLFACCIÓN. OLFATOMETRÍA. MANEJO DE LOS PROBLEMAS OLFATIVOS.
dc.relation.referencesChaná, P., & Júri, C. (2007). Déficit de la olfacción en la enfermedad de Parkinson: Un síntoma a considerar en la práctica clínica.
dc.relation.referencesCofré, A., Ricciardi, D., & Soler, G. (2015). Alteraciones del olfato asociadas a hipogonadismo hipogonadotrófico. Su importancia en la detección precoz. REVISTA FASO.
dc.relation.referencesDaniel, L., Crusaley, R., Cárdenas-Valdez, J. R., Enrico Vázquez, G., De Jesús, M., Ortega, G., & Calvillo Téllez, A. (2019). Sistema de clasificación SVM de señales electromiográficas extraídas en un sistema embebido SVM Classification System of Electromyographic Signals Extracted in an Embedded System. In Research in Computing Science (Vol. 148, Issue 2).
dc.relation.referencesEster, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. www.aaai.org
dc.relation.referencesFernández, M. Á. G. (2019). Artificial intelligence in cardiac imaging: The future is here. Revista Argentina de Cardiologia, 87(6), 469–473. https://doi.org/10.7775/rac.v87.i6.16997
dc.relation.referencesFornazieri, M., de Rezende, F., & Pinto, T. (2010). Applicability of the university of pennsylvania smell identification test (SIT) in brazilians: pilot study. Braz J Otorhinolaryngol.
dc.relation.referencesFulbright, R. K., Skudlarski, P., Lacadie, C. M., Warrenburg, S., Bowers, A. A., Gore, J. C., & Wexler, B. E. (1998). responses to pleasant and unpleasant odors. Functional MR imaging of regional brain Functional MR Imaging of Regional Brain Responses to Pleasant and Unpleasant Odors. In AJNR Am J Neuroradiol (Vol. 19, Issue 9). http://www.ajnr.org/content/19/9/
dc.relation.referencesGalván, P., Fusillo, J., González, F., Vukujevic, O., Recalde, L., Rivas, R., Ortellado, J., Portillo, J., Borba, J., & Hilario, E. (2022). Feasibility of using artificial intelligence for screening COVID-19 patients in Paraguay. Revista Panamericana de Salud Publica/Pan American Journal of Public Health, 46. https://doi.org/10.26633/RPSP.2022.20
dc.relation.referencesGómez-Díaz, M., Villalobos-Torres, A., Lara-Rendón, C., Juárez-Guerra, L., Castellanos-Nolasco, E., Ortiz-Gaucín, A., & Suarez Y Gómez, L. (2018a). Análisis de bioseñales: Enfoque técnico de la adquisición, procesamiento y sus aplicaciones. INNOVACIÓN Y DESARROLLO TECNOLÓGICO REVISTA DIGITAL, 10(2).
dc.relation.referencesGómez-Díaz, M., Villalobos-Torres, A., Lara-Rendón, C., Juárez-Guerra, L., Castellanos-Nolasco, E., Ortiz-Gaucín, A., & Suarez Y Gómez, L. (2018b). INNOVACIÓN Y DESARROLLO TECNOLÓGICO REVISTA DIGITAL Análisis de bioseñales: Enfoque técnico de la adquisición, procesamiento y sus aplicaciones. 10(2).
dc.relation.referencesGuerrero Martínez, J. F. (2010). INGENIERÍA BIOMÉDICA Tema 2 Bioseñales 2.1. Introducción.
dc.relation.referencesGuevara, G. L. (2016). CLASIFICACION DE SEÑALES DE ELECTROENCEFALOGRÁMA PARA DIAGNOSTICAR DEPRESION CLASSIFICATION OF EEG SIGNALS FOR DIAGNOSING DEPRESSION.
dc.relation.referencesHan, J., Kamber, M., & Pei, J. (2011a). Data Mining. Concepts and Techniques, 3rd Edition (The Morgan Kaufmann Series in Data Management Systems).
dc.relation.referencesHan, J., Kamber, M., & Pei, J. (2011b). Data Mining. Concepts and Techniques, 3rd Edition (The Morgan Kaufmann Series in Data Management Systems).
dc.relation.referencesHou, H. R., Meng, Q. H., & Sun, B. (2022a). A triangular hashing learning approach for olfactory EEG signal recognition. Applied Soft Computing, 118. https://doi.org/10.1016/j.asoc.2022.108471
dc.relation.referencesHou, H. R., Meng, Q. H., & Sun, B. (2022b). A triangular hashing learning approach for olfactory EEG signal recognition. Applied Soft Computing, 118. https://doi.org/10.1016/j.asoc.2022.108471
dc.relation.referencesHummel, T., Kobal, G., Gudziol, H., & Mackay-Sim, A. (2007). Normative data for the “Sniffin’’ Sticks" including tests of odor identification, odor discrimination, and olfactory thresholds: An upgrade based on a group of more than 3,000 subjects.” European Archives of Oto-Rhino-Laryngology, 264(3), 237–243. https://doi.org/10.1007/s00405-006-0173-0
dc.relation.referencesIBM. (2021a). Conceptos básicos de ayuda de CRISP-DM. https://www.ibm.com/docs/es/spss-modeler/saas?topic=dm-crisp-help-overview
dc.relation.referencesIBM. (2021b). Conceptos básicos de ayuda de CRISP-DM. https://www.ibm.com/docs/es/spss-modeler/saas?topic=dm-crisp-help-overview
dc.relation.referencesIravani, B., Arshamian, A., Ohla, K., Wilson, D. A., & Lundström, J. N. (2020a). Non-invasive recording from the human olfactory bulb. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14520-9
dc.relation.referencesIravani, B., Arshamian, A., Ohla, K., Wilson, D. A., & Lundström, J. N. (2020b). Non-invasive recording from the human olfactory bulb. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-14520-9
dc.relation.referencesIravani, B., Arshamian, A., Schaefer, M., Svenningsson, P., & Lundström, J. N. (2021). A non-invasive olfactory bulb measure dissociates Parkinson’s patients from healthy controls and discloses disease duration. Npj Parkinson’s Disease, 7(1). https://doi.org/10.1038/s41531-021-00220-8
dc.relation.referencesIzquierdo-Domínguez, A., Rojas-Lechuga, M. J., Mullol, J., & Alobid, I. (2020). Olfactory dysfunction during COVID-19 pandemic. Medicina Clinica, 155(9), 403–408. https://doi.org/10.1016/j.medcli.2020.06.006
dc.relation.referencesJ. A. F. Tresguerres, Orlando A. Mora Novaro, & José E. Sánchez Criado. (2005). Fisiologia humana (3a. ed.) (3a. ed).
dc.relation.referencesJain, A. K., Murty, M. N., & Flynn, P. J. (2000). Data Clustering: A Review.
dc.relation.referencesJorge Díaz-Ramírez. (2021). Aprendizaje Automático y Aprendizaje Profundo. Ingeniare. Revista Chilena de Ingeniería, 29(2), 182–183. https://www.mckinsey.com/business-functions/sustainability/our-insights/artificial-intelligence-and-the-
dc.relation.referencesJose, M., & Juan Ramirez. (2020). Procesamiento Embebido de P300 Basado en Red Neuronal Convolucional para Interfaz Cerebro-Computadora Ubicua.
dc.relation.referencesKamel, N., & Malik, A. S. (2015). EEG/ERP analysis : methods and applications.
dc.relation.referencesKlemm, W. R., Lutes, S. D., Hendrix, D. V, & Warrenburg, S. (1992). Topographical EEG maps of human responses to odors. In Chemical Senses (Vol. 17, Issue 3). http://chemse.oxfordjournals.org/
dc.relation.referencesKobal, G., Klimek, L., Wolfensberger, M., & Gudziol, H. (2000). Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. Eur Arch Otorhinolaryngol.
dc.relation.referencesKrbot Skorić, M., Adamec, I., Jerbić, A. B., Gabelić, T., Hajnšek, S., & Habek, M. (2015a). Electroencephalographic Response to Different Odors in Healthy Individuals: A Promising Tool for Objective Assessment of Olfactory Disorders. Clinical EEG and Neuroscience, 46(4), 370–376. https://doi.org/10.1177/1550059414545649
dc.relation.referencesKrbot Skorić, M., Adamec, I., Jerbić, A. B., Gabelić, T., Hajnšek, S., & Habek, M. (2015b). Electroencephalographic Response to Different Odors in Healthy Individuals: A Promising Tool for Objective Assessment of Olfactory Disorders. Clinical EEG and Neuroscience, 46(4), 370–376. https://doi.org/10.1177/1550059414545649
dc.relation.referencesLemuz-López, R., Gómez-López, W., Ayaquica-Martínez, I., & Guillén-Galván, C. (2014). Selección de Electrodos Basada en k-means para la Clasificación de Actividad Motora en EEG.
dc.relation.referencesLiu, B., Chang, H., Peng, K., & Wang, X. (2022). An End-to-End Depression Recognition Method Based on EEGNet. Frontiers in Psychiatry, 13. https://doi.org/10.3389/fpsyt.2022.864393
dc.relation.referencesLoncaric, F., Camara, O., & Piella, G. (2021). La integración de la inteligencia artificial en el abordaje clínico del paciente: enfoque en la imagen cardiaca. Revista Española de Cardiología. https://doi.org/./j.recesp...
dc.relation.referencesLorena, M., Javier, S., & Alberto Calderón, M. P. (2020). Detección de patologías en señales biomédicas mediante técnicas de machine learning.
dc.relation.referencesLorig, T. S., & Schw Artz, G. E. (1988). Brain and odor: 1. Alteration of human EEG by odor administration. In Psychobiology /988 (Issue 3).
dc.relation.referencesLosada, D. (2020). Caracterización de Potenciales EEG Olfativos en Personas Saludables. Universidad Antonio Nariño.
dc.relation.referencesLotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F. (2018). A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. In Journal of Neural Engineering (Vol. 15, Issue 3). Institute of Physics Publishing. https://doi.org/10.1088/1741-2552/aab2f2
dc.relation.referencesMartin, G. N. (1998a). Human electroencephalographic (EEG) response to olfactory stimulation: Two experiments using the aroma of food. International Journal of Psychophysiology, 30(3), 287–302. https://doi.org/10.1016/S0167-8760(98)00025-7
dc.relation.referencesMartin, G. N. (1998b). Human electroencephalographic (EEG) response to olfactory stimulation: Two experiments using the aroma of food. International Journal of Psychophysiology, 30(3), 287–302. https://doi.org/10.1016/S0167-8760(98)00025-7
dc.relation.referencesMasaoka, Y., Harding, I. H., Koiwa, N., Yoshida, M., Harrison, B. J., Lorenzetti, V., Ida, M., Izumizaki, M., Pantelis, C., & Homma, I. (2014). The neural cascade of olfactory processing: A combined fMRI-EEG study. Respiratory Physiology and Neurobiology, 204, 71–77. https://doi.org/10.1016/j.resp.2014.06.008
dc.relation.referencesMazzola, M. (2021). Aplicación de la Inteligencia Artificial Geoespacial a la epidemiología medio ambiental. Universidad de Malaga.
dc.relation.referencesMedina, A. (2015). Diagnóstico de Señales Biomédicas con Redes Neuronales Artificiales.
dc.relation.referencesMeza, B. (n.d.). Clasificación de señales EMG.
dc.relation.referencesMicó, P. (2005). Nuevos desarrollos y aplicaciones basados en métodos estocásticos para el agrupamiento no supervisado de latidos en señales electrocardiográficas.
dc.relation.referencesMjahad, A. (2017). Análisis de Señales Biomédicas para Aplicación de Terapias en la Fibrilación Ventricular Cardiaca. www.who.int/mediacentre/factsheets/fs317/es/.
dc.relation.referencesMoein, S. T., Hashemian, S. M. R., Mansourafshar, B., Khorram-Tousi, A., Tabarsi, P., & Doty, R. L. (2020). Smell dysfunction: a biomarker for COVID-19. International Forum of Allergy and Rhinology, 10(8), 944–950. https://doi.org/10.1002/alr.22587
dc.relation.referencesMuñoz Gamboa, C., & Jiménez Cruz, J. (2008). Potenciales evocados y cognición Artemisa medigraphic en línea (Issue 1). www.medigraphic.com
dc.relation.referencesNajarian, K. S. (n.d.). Biomedical Signal and Image Processing.
dc.relation.referencesNamazi, H., Akrami, A., Nazeri, S., & Kulish, V. V. (2016). Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal. In BioMed Research International (Vol. 2016). Hindawi Limited. https://doi.org/10.1155/2016/5469587
dc.relation.referencesNoelia, A., & Cicchino, B. (2013). UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE INGENIERÍA Tesis presentada para la obtención del grado de MAGISTER EN INGENIERÍA.
dc.relation.referencesOrganización Panamericana de la Salud. (2020). La OMS caracteriza a COVID-19 como una pandemia.
dc.relation.referencesPablo Antonio Stack Sánchez. (2021). Métodos de Aprendizaje Supervisado y no Supervisado para la Estimación de Microestructura Cerebral en Datos de DWMR. Centro de Investigación en Matemáticas, A.C.
dc.relation.referencesPause, B. M., Sojka, B., Krauel, K., & Ferstl, R. (1996). The nature of the late positive complex within the olfactory event- related potential (OERP). Psychophysiology, 33(4). https://doi.org/10.1111/j.1469-8986.1996.tb01062.x
dc.relation.referencesQuarmley, M., Moberg, P. J., Mechanic-Hamilton, D., Kabadi, S., Arnold, S. E., Wolk, D. A., & Roalf, D. R. (2017). Odor Identification Screening Improves Diagnostic Classification in Incipient Alzheimer’s Disease. Journal of Alzheimer’s Disease, 55(4), 1497–1507. https://doi.org/10.3233/JAD-160842
dc.relation.referencesRahayel, S., Frasnelli, J., & Joubert, S. (2012a). The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: A meta-analysis. Behavioural Brain Research, 231(1), 60–74. https://doi.org/10.1016/j.bbr.2012.02.047
dc.relation.referencesRahayel, S., Frasnelli, J., & Joubert, S. (2012b). The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: A meta-analysis. Behavioural Brain Research, 231(1), 60–74. https://doi.org/10.1016/j.bbr.2012.02.047
dc.relation.referencesRand, W. M. (1971). Objective Criteria for the Evaluation of Clustering Methods. In Source: Journal of the American Statistical Association (Vol. 66, Issue 336).
dc.relation.referencesRasheed, K., Qayyum, A., Qadir, J., Sivathamboo, S., Kwan, P., Kuhlmann, L., O’Brien, T., & Razi, A. (2020). Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. http://arxiv.org/abs/2002.01925
dc.relation.referencesRasheed, M. A., Chand, P., Ahmed, S., Sharif, H., Hoodbhoy, Z., Siddiqui, A., & Hasan, B. S. (2021). Use of artificial intelligence on Electroencephalogram (EEG) waveforms to predict failure in early school grades in children from a rural cohort in Pakistan. PLoS ONE, 16(2 February). https://doi.org/10.1371/journal.pone.0246236
dc.relation.referencesRibeiro, J. C., Simões, J., Silva, F., Silva, E. D., Hummel, C., Hummel, T., & Paiva, A. (2016). Cultural adaptation of the Portuguese version of the “Sniffin’’ Sticks" smell test: Reliability, validity, and normative data.” PLoS ONE, 11(2). https://doi.org/10.1371/journal.pone.0148937
dc.relation.referencesRobles-Osorio, M. L., Corona, R., Morales, T., & Sabath, E. (2020). Enfermedad renal crónica y olfato. Nefrología, 40(2), 120–125. https://doi.org/10.1016/j.nefro.2019.04.009
dc.relation.referencesSanei, S., & Chambers, J. A. (2007). EEG SIGNAL PROCESSING.
dc.relation.referencesSarmiento, J. F. (2024). Diagnostico diferencial de síndromes demenciales para el reconocimiento de Alzheimer en personas con déficit cognitivo leve: potenciales biomarcadores de señales EEG. Open Science Framework OSF. https://osf.io/ed6kh/?view_only=5679a4a07d964e578065a221d2f548dc
dc.relation.referencesSchriever, V. A., Han, P., Weise, S., Hösel, F., Pellegrino, R., & Hummel, T. (2017). Time frequency analysis of olfactory induced EEG-power change. PLoS ONE, 12(10). https://doi.org/10.1371/journal.pone.0185596
dc.relation.referencesSingh, K. K. (Telecommunications professor), Elhoseny, M., Singh, A., & Elngar, A. A. (2021). Machine learning and internet of medical things in healthcare.
dc.relation.referencesSowndhararajan, K., & Kim, S. (2016). Influence of fragrances on human psychophysiological activity: With special reference to human electroencephalographic response. In Scientia Pharmaceutica (Vol. 84, Issue 4, pp. 724–751). MDPI AG. https://doi.org/10.3390/scipharm84040724
dc.relation.referencesStoica, Petre., & Moses, R. L. (2005). Spectral analysis of signals. Pearson/Prentice Hall.
dc.relation.referencesSubasi, A. (2019). Biomedical Signal Classification Methods. In Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques (pp. 277–434). Elsevier. https://doi.org/10.1016/b978-0-12-817444-9.00005-2
dc.relation.referencesSudip, P. (2019). Biomedical engineering and its applications in healthcare. In Biomedical Engineering and its Applications in Healthcare. Springer Singapore. https://doi.org/10.1007/978-981-13-3705-5
dc.relation.referencesSugawara, Y., Shigetho, A., Yoneda, M., Tuchiya, T., Yamada, H., Matumura, T., & Hirano, M. (2015). Relationship between Mood Change, Odor and Its Psychophysiological Responses in Humans in Terms of the Sensory Evaluation Spectrum. Psychology, 06(08), 965–988. https://doi.org/10.4236/psych.2015.68095
dc.relation.referencesTompkins, W. J. (2000). BIOMEDICAL DIGITAL SIGNAL PROCESSING C-Language Examples and Laboratory Experiments for the IBM ® PC.
dc.relation.referencesTran, Y. (2020). EEG Signal Processing for Biomedical Applications. www.mdpi.com/journal/sensors
dc.relation.referencesTresguerres. (2005). Fisiologia humana (3a. ed.).
dc.relation.referencesTyler S. Lorig. (1999). On the similarity of odor and language perception. Neuroscience & Biobehavioral Reviews, 23(3), 391–398.
dc.relation.referencesVilela Junior, G. de B., Lima, B. N., Ribeiro, H. F., Rodrigues, M. F., Pereira, A. de A., Oliveira, J. R. L. de, Silio, L. F., & Passos, R. P. (2022). IMPORTÂNCIA DO ÍNDICE FOWLKES-MALLOWS (IMF), DO COEFICIENTE DE CORRELAÇÃO DE MATTHEWS (MCC) E DO ÍNDICE YOUDEN (IY) NOS CLASSIFICADORES DE INTELIGÊNCIA ARTIFICIAL NA ÁREA DA SAÚDE. Centro de Pesquisas Avançadas Em Qualidade de Vida, 14(v14n2), 1. https://doi.org/10.36692/v14n3-01
dc.relation.referencesWalla, P., Duregger, C., Deecke, L., & Dal-Bianco, P. (2011). Dysfunctional incidental olfaction in mild cognitive impairment (MCI): An electroencephalography (EEG) study. Brain Sciences, 1(1), 3–15. https://doi.org/10.3390/brainsci1010003
dc.relation.referencesWen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., Bottani, S., Dormont, D., Durrleman, S., Burgos, N., & Colliot, O. (2020). Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Medical Image Analysis, 63. https://doi.org/10.1016/j.media.2020.101694
dc.relation.referencesXing, M., Hu, S., Wei, B., & Lv, Z. (2022). Spatial-frequency-temporal convolutional recurrent network for olfactory-enhanced EEG emotion recognition. Journal of Neuroscience Methods, 376. https://doi.org/10.1016/j.jneumeth.2022.109624
dc.relation.referencesXuan Vinh, N., Epps, J., Cameron Bailey, J., Vinh Edu Au, N. X., Julien Epps, U., U Au, U. E., & Bailey, J. (2010). Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. In Journal of Machine Learning Research (Vol. 11). https://www.researchgate.net/publication/220320632_Information_Theoretic_Measures_for_Clusterings_Comparison_Variants_Properties_Normaliz
dc.relation.referencesYavuz, E., & Aydemir, O. (2016, September 19). Olfaction recognition by EEG analysis using wavelet transform features. Proceedings of the 2016 International Symposium on INnovations in Intelligent SysTems and Applications, INISTA 2016. https://doi.org/10.1109/INISTA.2016.7571827
dc.relation.referencesZgallai, W. A. (2020). Biomedical signal processing and artificial intelligence in healthcare.
dc.relation.referencesZhang, X. N., Meng, Q. H., Zeng, M., & Hou, H. R. (2021). Decoding olfactory EEG signals for different odor stimuli identification using wavelet-spatial domain feature. Journal of Neuroscience Methods, 363. https://doi.org/10.1016/j.jneumeth.2021.109355
dc.rightsAttribution-NoDerivatives 4.0 Internacionalesp
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessesp
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subjectERP olfativos
dc.subjectAprendizaje automático
dc.subjectSeñales EEG
dc.subjectPotenciales Evocados
dc.subject.keywordsOlfactory ERPs
dc.subject.keywordsMachine learning
dc.subject.keywordsEvoked potentials
dc.subject.keywordsEEG signals
dc.titleCaracterización de los potenciales evocados relacionados con eventos olfativos (OERP) provenientes del bulbo olfatorio en personas saludables empleando aprendizaje automático no supervisado
dc.title.translatedCharacterization of olfactory event-related evoked potentials (OERPs) from the olfactory bulb of event-related evoked potentials (OERPs) from the olfactory bulb in healthy individuals using unsupervised machine learning

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
10.87 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 3 de 3
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.95 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
No hay miniatura disponible
Nombre:
DANIELA LOSADA CERQUERA.pdf
Tamaño:
152.1 KB
Formato:
Adobe Portable Document Format
Descripción:
No hay miniatura disponible
Nombre:
Carta de autorizacion.pdf
Tamaño:
337.86 KB
Formato:
Adobe Portable Document Format
Descripción: