Optimización del diagnóstico de la diabetes: un enfoque de análisis no lineal con inteligencia artificial para reducir la incertidumbre en la toma de decisiones
dc.contributor.advisor | Torres Soler, Luis Carlos | |
dc.contributor.advisor | Ramos Montaña, Jesus David | |
dc.contributor.author | Arias Bodmer, Juan Camilo | |
dc.contributor.orcid | Arias Bodmer, Juan Camilo [0009-0001-4401-520X] | |
dc.date.accessioned | 2024-07-17T16:45:09Z | |
dc.date.available | 2024-07-17T16:45:09Z | |
dc.date.issued | 2024-05 | |
dc.description.abstract | En el ámbito de la medicina, la toma de decisiones juega un papel fundamental en la atención sanitaria, tanto a nivel clínico como en la salud poblacional. La complejidad de este proceso, marcado por dimensiones como la identificación de problemas, el acuerdo en protocolos clínicos, el conocimiento necesario y la estructura de pensamiento, resalta la importancia de abordar las decisiones médicas de manera integral y multidimensional. La toma de decisiones diagnósticas y terapéuticas en pacientes con enfermedades crónicas, como la diabetes, conlleva una incertidumbre inherente que desafía a los profesionales de la salud. En este contexto, la integración de tecnologías avanzadas, como el machine learning (ML), en la práctica clínica puede modificar el enfoque determinista basado únicamente en resultados de laboratorio. Este cambio busca considerar la interacción sistémica de múltiples variables en cada paciente. La inclusión de técnicas de análisis no lineal de datos permite una comprensión más holística del paciente, lo que puede llevar a una interpretación más precisa de la variabilidad de la diabetes. Este enfoque integrador y más completo tiene el potencial de mejorar la identificación temprana y el tratamiento de la enfermedad. Este trabajo aborda el desafío del diagnóstico de la diabetes en un contexto de desbalance de datos, utilizando enfoques analíticos similares a los estudios ecológicos, que buscan comprender las interacciones en un sistema complejo, para equilibrar las clases de manera representativa. Se reconoce que existen limitaciones en cuanto al tamaño de la muestra, sesgos potenciales en la selección de variables y la interpretación de resultados, lo que destaca la importancia de abordar de manera transparente las restricciones y desafíos presentes en este tipo de análisis de datos del mundo real. En este caso, se busca equilibrar las clases de pacientes con y sin diabetes para que el análisis sea más preciso y representativo de la realidad. Abordar de forma transparente estas restricciones y desafíos permitirá a otros investigadores comprender y contextualizar adecuadamente los hallazgos. Al considerar las implicaciones de este estudio y las posibles direcciones futuras de investigación, se resalta la relevancia de los modelos de ML en la predicción de la aparición de la diabetes y la mejora de la toma de decisiones clínicas. La validación y comparación de diferentes modelos de ML se presenta como una estrategia clave para fortalecer la planificación de intervenciones en salud poblacional y optimizar la atención a pacientes con diabetes. En este contexto de constante evolución tecnológica y desafíos en la toma de decisiones médicas, este trabajo busca contribuir al conocimiento y la práctica en el campo de la medicina, ofreciendo un enfoque integral y multidimensional para abordar la complejidad de la atención sanitaria y la gestión de enfermedades crónicas como la diabetes. | |
dc.description.abstractenglish | In the field of medicine, decision making plays a fundamental role in health care, both at the clinical level and in population health. The complexity of this process, marked by dimensions such as problem identification, agreement on clinical protocols, necessary knowledge and thought structure, highlights the importance of approaching medical decisions in a comprehensive and multidimensional manner. Diagnostic and therapeutic decision making in patients with chronic diseases, such as diabetes, carries an inherent uncertainty that challenges healthcare professionals. In this context, the integration of advanced technologies, such as machine learning (ML), into clinical practice can modify the deterministic approach based solely on laboratory results. This shift seeks to consider the systemic interaction of multiple variables in each patient. The inclusion of nonlinear data analysis techniques allows for a more holistic understanding of the patient, which can lead to a more accurate interpretation of diabetes variability. This integrative and more comprehensive approach has the potential to improve early identification and treatment of the disease. This paper addresses the challenge of diabetes diagnosis in a context of data imbalance, using analytical approaches similar to ecological studies, which seek to understand interactions in a complex system, to balance classes in a representative manner. It is recognized that there are limitations in terms of sample size, potential biases in variable selection, and interpretation of results, highlighting the importance of transparently addressing the constraints and challenges present in this type of real-world data analysis. In this case, we seek to balance the classes of patients with and without diabetes to make the analysis more accurate and representative of reality. Transparently addressing these constraints and challenges will allow other researchers to properly understand and contextualize the findings. In considering the implications of this study and possible future research directions, the relevance of ML models in predicting the onset of diabetes and improving clinical decision making is highlighted. Validation and comparison of different ML models is presented as a key strategy to strengthen the planning of population health interventions and optimize care for patients with diabetes. In this context of constant technological evolution and challenges in medical decision making, this work seeks to contribute to knowledge and practice in the field of medicine, offering a comprehensive and multidimensional approach to address the complexity of health care and the management of chronic diseases such as diabetes. | |
dc.identifier.uri | https://hdl.handle.net/20.500.12495/12681 | |
dc.language.iso | es | |
dc.relation.references | Attieh R, Gagnon MP, Estabrooks CA, Légaré F, Ouimet M, Roch G, et al. Organizational readiness for knowledge translation in chronic care: a review of theoretical components. Implementation Science [Internet]. 2013;8(1):138. Available from: http://10.0.4.162/1748-5908-8-138 | |
dc.relation.references | Nomura A, Noguchi M, Kometani M, Furukawa K, Yoneda T. Artificial Intelligence in Current Diabetes Management and Prediction. Curr Diab Rep [Internet]. 2021 Dec 1 [cited 2024 Jan 12];21(12). Available from: https://pubmed.ncbi.nlm.nih.gov/34902070/ | |
dc.relation.references | Dinh A, Miertschin S, Young A, Mohanty SD. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. BMC Med Inform Decis Mak [Internet]. 2019 Nov 6 [cited 2024 Jan 12];19(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31694707/ | |
dc.relation.references | Sharma T, Shah M. A comprehensive review of machine learning techniques on diabetes detection. Vis Comput Ind Biomed Art [Internet]. 2021 Dec 1 [cited 2024 Jan 14];4(1). Available from: https://pubmed.ncbi.nlm.nih.gov/34862560/ | |
dc.relation.references | Bartley N, Napier C, Best M, Butow P. Patient experience of uncertainty in cancer genomics: a systematic review. Genetics in Medicine [Internet]. 2020;22(9):1450–60. Available from: http://10.0.4.14/s41436-020-0829-y | |
dc.relation.references | Begin AS, Hidrue MK, Lehrhoff S, Lennes IT, Armstrong K, Weilburg JB, et al. Association of Self-reported Primary Care Physician Tolerance for Uncertainty With Variations in Resource Use and Patient Experience. JAMA Netw Open [Internet]. 2022;5(9):e2229521. Available from: http://10.0.3.233/jamanetworkopen.2022.29521 | |
dc.relation.references | Li X, Sargolzaei S. Can Deep Learning Hit a Moving Target? A Scoping Review of Its Role to Study Neurological Disorders in Children. Frontiers in Computational Neuroscience | www.frontiersin.org. 2021;1:670489. | |
dc.relation.references | Agliata A, Giordano D, Bardozzo F, Bottiglieri S, Facchiano A, Tagliaferri R. Machine Learning as a Support for the Diagnosis of Type 2 Diabetes. Int J Mol Sci [Internet]. 2023 Apr 1 [cited 2024 Jan 14];24(7). Available from: https://pubmed.ncbi.nlm.nih.gov/37047748/ | |
dc.relation.references | Olisah CC, Smith L, Smith M. Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective. Comput Methods Programs Biomed [Internet]. 2022 Jun 1 [cited 2024 Jan 11];220. Available from: https://pubmed.ncbi.nlm.nih.gov/35429810/ | |
dc.relation.references | Nguyen BP, Pham HN, Tran H, Nghiem N, Nguyen QH, Do TTT, et al. Predicting the onset of type 2 diabetes using wide and deep learning with electronic health records. Comput Methods Programs Biomed [Internet]. 2019 Dec 1 [cited 2024 Jan 11];182. Available from: https://pubmed.ncbi.nlm.nih.gov/31505379/ | |
dc.relation.references | Rahman M, Islam D, Mukti RJ, Saha I. A deep learning approach based on convolutional LSTM for detecting diabetes. Comput Biol Chem [Internet]. 2020 Oct 1 [cited 2024 Jan 11];88. Available from: https://pubmed.ncbi.nlm.nih.gov/32688009/ | |
dc.relation.references | Khodadadi A, Ghanbari Bousejin N, Molaei S, Kumar Chauhan V, Zhu T, Clifton DA. Improving Diagnostics with Deep Forest Applied to Electronic Health Records. Sensors (Basel) [Internet]. 2023 Jul 1 [cited 2024 Jan 14];23(14). Available from: https://pubmed.ncbi.nlm.nih.gov/37514865/ | |
dc.relation.references | Jiang L, Yang Z, Wang D, Gong H, Li J, Wang J, et al. Diabetes prediction model for unbalanced community follow-up data set based on optimal feature selection and scorecard. Digit Health [Internet]. 2024 Jan 1 [cited 2024 Mar 21];10. Available from: https://journals.sagepub.com/doi/full/10.1177/20552076241236370 | |
dc.relation.references | de Oliveira JM, da Costa CA, Antunes RS. Data structuring of electronic health records: a systematic review. Health Technol (Berl) [Internet]. 2021 Nov 1 [cited 2023 Sep 17];11(6):1219–35. Available from: https://link.springer.com/article/10.1007/s12553-021-00607-w | |
dc.relation.references | Ghosh AK. On the challenges of using evidence-based information: the role of clinical uncertainty. J Lab Clin Med. 2004 Aug;144(2):60–4. | |
dc.relation.references | Ghosh AK. Understanding medical uncertainty: a primer for physicians. J Assoc Physicians India. 2004 Sep;52:739–42. | |
dc.relation.references | Higgins J. Nonlinear systems in medicine. Yale J Biol Med [Internet]. 2002 [cited 2023 Aug 18];75(5–6):247. Available from: /pmc/articles/PMC2588816/?report=abstract | |
dc.relation.references | Mansier P, Clairambault J, Charlotte N, Médigue C, Vermeiren C, LePape G, et al. Linear and non-linear analyses of heart rate variability: a minireview. Cardiovasc Res [Internet]. 1996 Mar 1 [cited 2023 Aug 18];31(3):371–9. Available from: https://dx.doi.org/10.1016/S0008-6363(96)00009-0 | |
dc.relation.references | Torres Soler LC, Vargas Sánchez GG. Pensamiento complejo y sistémico [Internet]. 2018 [cited 2024 Mar 25]. Available from: https://hdl.handle.net/20.500.12495/3357 | |
dc.relation.references | Louis ED. The evolving definition of essential tremor: What are we dealing with? Parkinsonism & Related Disorders. 2018;46:S87–91. | |
dc.relation.references | V.S S, Surendran S. A Review of Various Linear and Non Linear Dimensionality Reduction Techniques. 2015; | |
dc.relation.references | Woldaregay AZ, Årsand E, Walderhaug S, Albers D, Mamykina L, Botsis T, et al. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif Intell Med [Internet]. 2019 Jul 1 [cited 2023 Sep 5];98:109–34. Available from: https://pubmed.ncbi.nlm.nih.gov/31383477/ | |
dc.relation.references | Triantafyllidis A, Kondylakis H, Katehakis D, Kouroubali A, Koumakis L, Marias K, et al. Deep Learning in mHealth for Cardiovascular Disease, Diabetes, and Cancer: Systematic Review. JMIR Mhealth Uhealth [Internet]. 2022 Apr 1 [cited 2023 Sep 5];10(4). Available from: https://pubmed.ncbi.nlm.nih.gov/35377325/ | |
dc.relation.references | Kumar N, Narayan Das N, Gupta D, Gupta K, Bindra J. Efficient Automated Disease Diagnosis Using Machine Learning Models. J Healthc Eng [Internet]. 2021 [cited 2023 Sep 6];2021. Available from: /pmc/articles/PMC8101482/ | |
dc.relation.references | Lai H, Huang H, Keshavjee K, Guergachi A, Gao X. Predictive models for diabetes mellitus using machine learning techniques. BMC Endocr Disord [Internet]. 2019 Oct 15 [cited 2023 Sep 6];19(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31615566/ | |
dc.relation.references | Poly TN, Islam MM, Li YCJ. Early Diabetes Prediction: A Comparative Study Using Machine Learning Techniques. Stud Health Technol Inform [Internet]. 2022 [cited 2023 Sep 6];295:409–13. Available from: https://pubmed.ncbi.nlm.nih.gov/35773898/ | |
dc.relation.references | Vangeepuram N, Liu B, Chiu P hsiang, Wang L, Pandey G. Predicting youth diabetes risk using NHANES data and machine learning. Sci Rep [Internet]. 2021 Dec 1 [cited 2023 Sep 6];11(1). Available from: https://pubmed.ncbi.nlm.nih.gov/34045491/ | |
dc.relation.references | Zheng T, Xie W, Xu L, He X, Zhang Y, You M, et al. A machine learning-based framework to identify type 2 diabetes through electronic health records. Int J Med Inform [Internet]. 2017 Jan 1 [cited 2023 Sep 6];97:120–7. Available from: https://pubmed.ncbi.nlm.nih.gov/27919371/ | |
dc.relation.references | Dagliati A, Marini S, Sacchi L, Cogni G, Teliti M, Tibollo V, et al. Machine Learning Methods to Predict Diabetes Complications. J Diabetes Sci Technol [Internet]. 2018 Mar 1 [cited 2024 Jan 11];12(2):295–302. Available from: https://pubmed.ncbi.nlm.nih.gov/28494618/ | |
dc.relation.references | Zhou X, Zhang Y, Shi M, Shi H, Zheng Z. Early detection of liver disease using data visualisation and classification method. Biomed Signal Process Control. 2014 May 1;11(1):27–35. | |
dc.relation.references | Midway SR. Principles of Effective Data Visualization. Patterns (N Y) [Internet]. 2020 Dec 11 [cited 2023 Sep 17];1(9). Available from: https://pubmed.ncbi.nlm.nih.gov/33336199/ | |
dc.relation.references | McNab D, McKay J, Shorrock S, Luty S, Bowie P. Development and application of ‘systems thinking’ principles for quality improvement. BMJ Open Qual [Internet]. 2020 Mar 24 [cited 2024 Mar 25];9(1). Available from: /pmc/articles/PMC7103793/ | |
dc.relation.references | Abdulrahman M. El-Sayed. Systems Science and Population Health [Internet]. Systems Science and Population Health. Oxford University Press; 2017 [cited 2024 Jan 21]. Available from: https://academic.oup.com/book/4549 | |
dc.relation.references | Mitchell M. Complexity A Guided Tour [Internet]. Oxford University Press; 2009 [cited 2024 Jan 21]. Available from: https://academic.oup.com/book/51004 | |
dc.relation.references | Allesøe RL, Lundgaard AT, Hernández Medina R, Aguayo-Orozco A, Johansen J, Nissen JN, et al. Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models. Nat Biotechnol [Internet]. 2023 Mar 1 [cited 2024 Jan 14];41(3):399–408. Available from: https://pubmed.ncbi.nlm.nih.gov/36593394/ | |
dc.relation.references | Abhari S, Kalhori SRN, Ebrahimi M, Hasannejadasl H, Garavand A. Artificial Intelligence Applications in Type 2 Diabetes Mellitus Care: Focus on Machine Learning Methods. Healthc Inform Res [Internet]. 2019 Oct 1 [cited 2024 Jan 14];25(4):248–61. Available from: https://pubmed.ncbi.nlm.nih.gov/31777668/ | |
dc.relation.references | Lv K, Cui C, Fan R, Zha X, Wang P, Zhang J, et al. Detection of diabetic patients in people with normal fasting glucose using machine learning. BMC Med [Internet]. 2023 Dec 1 [cited 2024 Jan 20];21(1). Available from: https://pubmed.ncbi.nlm.nih.gov/37674168/ | |
dc.relation.references | Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I. Machine Learning and Data Mining Methods in Diabetes Research. Comput Struct Biotechnol J [Internet]. 2017 [cited 2024 Jan 20];15:104–16. Available from: https://pubmed.ncbi.nlm.nih.gov/28138367/ | |
dc.relation.references | Ljubic B, Hai AA, Stanojevic M, Diaz W, Polimac D, Pavlovski M, et al. Predicting complications of diabetes mellitus using advanced machine learning algorithms. J Am Med Inform Assoc [Internet]. 2020 Sep 1 [cited 2024 Jan 21];27(9):1343–51. Available from: https://pubmed.ncbi.nlm.nih.gov/32869093/ | |
dc.relation.references | Patro KK, Allam JP, Sanapala U, Marpu CK, Samee NA, Alabdulhafith M, et al. An effective correlation-based data modeling framework for automatic diabetes prediction using machine and deep learning techniques. BMC Bioinformatics [Internet]. 2023 Dec 1 [cited 2024 Jan 21];24(1). Available from: https://pubmed.ncbi.nlm.nih.gov/37784049/ | |
dc.relation.references | Pina AF, Meneses MJ, Sousa-Lima I, Henriques R, Raposo JF, Macedo MP. Big data and machine learning to tackle diabetes management. Eur J Clin Invest [Internet]. 2023 Jan 1 [cited 2024 Jan 21];53(1). Available from: https://pubmed.ncbi.nlm.nih.gov/36254106/ | |
dc.relation.references | Jaya A, Kalaiselvi K, Goyal D, Al-Jumeily D. Handbook of Intelligent Healthcare Analytics: Knowledge Engineering with Big Data Analytics. Handbook of Intelligent Healthcare Analytics: Knowledge Engineering with Big Data Analytics [Internet]. 2022 Jan 1 [cited 2024 Mar 21];1–418. Available from: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119792550 | |
dc.relation.references | Makino M, Yoshimoto R, Ono M, Itoko T, Katsuki T, Koseki A, et al. Artificial intelligence predicts the progression of diabetic kidney disease using big data machine learning. Sci Rep [Internet]. 2019 Dec 1 [cited 2024 Jan 20];9(1). Available from: https://pubmed.ncbi.nlm.nih.gov/31413285/ | |
dc.relation.references | Kurt B, Gürlek B, Keskin S, Özdemir S, Karadeniz Ö, Kırkbir İB, et al. Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques. Med Biol Eng Comput [Internet]. 2023 Jul 1 [cited 2024 Jan 20];61(7):1649–60. Available from: https://pubmed.ncbi.nlm.nih.gov/36848010/ | |
dc.relation.references | Mohsen F, Al-Absi HRH, Yousri NA, El Hajj N, Shah Z. A scoping review of artificial intelligence-based methods for diabetes risk prediction. NPJ Digit Med [Internet]. 2023 Dec 1 [cited 2024 Jan 20];6(1). Available from: https://pubmed.ncbi.nlm.nih.gov/37880301/ | |
dc.relation.references | Dryad | Data -- Association of body mass index and age with incident diabetes in Chinese adults: a population-based cohort study [Internet]. [cited 2023 Sep 5]. Available from: https://datadryad.org/stash/dataset/doi:10.5061/dryad.ft8750v | |
dc.relation.references | Chen Y, Zhang XP, Yuan J, Cai B, Wang XL, Wu XL, et al. Association of body mass index and age with incident diabetes in Chinese adults: A population-based cohort study. BMJ Open. 2018;8(9). | |
dc.relation.references | Shahbaz H, Gupta M. Creatinine Clearance. 2023 May 20 [cited 2024 Mar 23]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK544228/ | |
dc.relation.references | Creatinine unit converter — Unithop [Internet]. [cited 2024 Mar 23]. Available from: https://unithop.com/lab/creatinine | |
dc.relation.references | Online conversion calculator for many types of measurement units in laboratory and medicine practice | UnitsLab.com [Internet]. [cited 2024 Mar 23]. Available from: https://unitslab.com/ | |
dc.relation.references | CRAN - Package readxl [Internet]. [cited 2024 Apr 17]. Available from: https://cran.r-project.org/web/packages/readxl/index.html | |
dc.relation.references | CRAN - Package tidyverse [Internet]. [cited 2024 Apr 17]. Available from: https://cran.r-project.org/web/packages/tidyverse/index.html | |
dc.relation.references | CRAN - Package summarytools [Internet]. [cited 2024 Apr 17]. Available from: https://cran.r-project.org/web/packages/summarytools/index.html | |
dc.relation.references | CRAN - Package psych [Internet]. [cited 2024 May 4]. Available from: https://cran.r-project.org/web/packages/psych/index.html | |
dc.relation.references | CRAN - Package ggcorrplot [Internet]. [cited 2024 May 4]. Available from: https://cran.r-project.org/web/packages/ggcorrplot/index.html | |
dc.relation.references | CRAN - Package DataExplorer [Internet]. [cited 2024 May 4]. Available from: https://cran.r-project.org/web/packages/DataExplorer/index.html | |
dc.relation.references | CRAN - Package caret [Internet]. [cited 2024 Apr 17]. Available from: https://cran.r-project.org/web/packages/caret/index.html | |
dc.relation.references | CRAN - Package lattice [Internet]. [cited 2024 Apr 17]. Available from: https://cran.r-project.org/web/packages/lattice/index.html | |
dc.relation.references | Li Y, Teng D, Shi X, Qin G, Qin Y, Quan H, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ [Internet]. 2020 Apr 28 [cited 2024 Apr 17];369. Available from: https://pubmed.ncbi.nlm.nih.gov/32345662/ | |
dc.relation.references | CRAN - Package ROSE [Internet]. [cited 2024 Apr 17]. Available from: https://cran.r-project.org/web/packages/ROSE/index.html | |
dc.relation.references | Rovetta A. Raiders of the Lost Correlation: A Guide on Using Pearson and Spearman Coefficients to Detect Hidden Correlations in Medical Sciences. Cureus [Internet]. 2020 Nov 30 [cited 2024 May 6];12(11). Available from: /pmc/articles/PMC7779167/ | |
dc.relation.references | Multiple Logistic Regression Analysis [Internet]. [cited 2024 May 6]. Available from: https://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_Multivariable/BS704_Multivariable8.html | |
dc.relation.references | Ward MM, Pajevic S, Dreyfuss J, Malley JD. Short-term prediction of mortality in patients with systemic lupus erythematosus: Classification of outcomes using random forests. Arthritis Care Res (Hoboken) [Internet]. 2006 Feb 15 [cited 2024 May 6];55(1):74–80. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/art.21695 | |
dc.relation.references | Klusowski JM. Analyzing CART. 2020; | |
dc.relation.references | Genuer R, Poggi JM. CART. 2020 [cited 2024 May 6];9–32. Available from: https://link.springer.com/chapter/10.1007/978-3-030-56485-8_2 | |
dc.relation.references | Burbidge R, Buxton B. An Introduction to Support Vector Machines for Data Mining. | |
dc.relation.references | CRAN - Package MASS [Internet]. [cited 2024 May 4]. Available from: https://cran.r-project.org/web/packages/MASS/index.html | |
dc.relation.references | CRAN - Package randomForest [Internet]. [cited 2024 May 4]. Available from: https://cran.r-project.org/web/packages/randomForest/ | |
dc.relation.references | CRAN - Package gridExtra [Internet]. [cited 2024 May 4]. Available from: https://cran.r-project.org/web/packages/gridExtra/index.html | |
dc.relation.references | CRAN - Package pROC [Internet]. [cited 2024 May 3]. Available from: https://cran.r-project.org/web/packages/pROC/index.html | |
dc.relation.references | CRAN - Package rpart [Internet]. [cited 2024 May 4]. Available from: https://cran.r-project.org/web/packages/rpart/index.html | |
dc.relation.references | CRAN - Package rpart.plot [Internet]. [cited 2024 May 4]. Available from: https://cran.r-project.org/web/packages/rpart.plot/index.html | |
dc.relation.references | CRAN - Package kernlab [Internet]. [cited 2024 May 3]. Available from: https://cran.r-project.org/web/packages/kernlab/index.html | |
dc.relation.references | CRAN - Package autoScorecard [Internet]. [cited 2024 May 4]. Available from: https://cran.r-project.org/web/packages/autoScorecard/index.html | |
dc.relation.references | CRAN - Package dplyr [Internet]. [cited 2024 May 4]. Available from: https://cran.r-project.org/web/packages/dplyr/index.html | |
dc.relation.references | Gómez-Peralta F, Abreu C, Cos X, Gómez-Huelgas R. When does diabetes start? Early detection and intervention in type2 diabetes mellitus. Rev Clin Esp [Internet]. 2020 Jun 1 [cited 2024 May 8];220(5):305–14. Available from: https://pubmed.ncbi.nlm.nih.gov/32107016/ | |
dc.relation.references | E Lima LMTDR. Subclinical Diabetes. An Acad Bras Cienc [Internet]. 2017 [cited 2024 May 8];89(1 Suppl 0):591–614. Available from: https://pubmed.ncbi.nlm.nih.gov/28492735/ | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.local | Acceso abierto | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Análisis no lineal | |
dc.subject | Sistemas complejos | |
dc.subject | Práctica clínica | |
dc.subject | Salud poblacional | |
dc.subject | Modelos de predicción | |
dc.subject | Evidencia del mundo real | |
dc.subject.keywords | Non-linear analysis | |
dc.subject.keywords | Complex systems | |
dc.subject.keywords | Clinical practice | |
dc.subject.keywords | Population health | |
dc.subject.keywords | Predictive models | |
dc.subject.keywords | Real-world evidence | |
dc.title | Optimización del diagnóstico de la diabetes: un enfoque de análisis no lineal con inteligencia artificial para reducir la incertidumbre en la toma de decisiones | |
dc.title.translated | Optimization of diabetes diagnosis: a nonlinear analysis approach with artificial intelligence to reduce uncertainty in decision making |
Archivos
Bloque de licencias
1 - 4 de 4
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 1.95 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 1 Probatus.pdf
- Tamaño:
- 175.21 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Anexo 2 acta de aprobacion.pdf
- Tamaño:
- 80 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
No hay miniatura disponible
- Nombre:
- Carta de autorizacion.pdf
- Tamaño:
- 271.39 KB
- Formato:
- Adobe Portable Document Format
- Descripción: