Desarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacárida

dc.contributor.advisorRobayo Medina, Angie Tatiana
dc.contributor.advisorParra Amin, Jorge Emilio
dc.contributor.advisorVelandia Paris, Maria Angélica
dc.contributor.authorOcampo Báez, Lía Victoria
dc.contributor.orcidOcampo Báez, Lía Victoria [0009-0005-3528-9507]
dc.date.accessioned2024-05-09T20:52:39Z
dc.date.available2024-05-09T20:52:39Z
dc.date.issued2023-05
dc.description.abstractEl término seta se refiere a un macrohongo con un cuerpo fructífero distintivo, el cual puede ser hipogeo o epigeo y lo suficientemente grande para ser visto a simple vista, por lo tanto pueden ser fácilmente recolectados a mano. Las setas comestibles son hongos filamentosos superiores, generalmente de los filos Basidiomycota y Ascomycota, las cuales son ampliamente reconocidas por su riqueza nutricional, su bajo valor calórico, su sabor y sus propiedades nutracéuticas (1), dentro de las que podemos resaltar el fortalecimiento de la función inmunitaria, el equilibrio de los niveles sanguíneos de glucosa, la reducción del crecimiento de tumores y el riesgo de padecer cáncer (2). Los beneficios de sus compuestos bioactivos han sido aprovechados en la medicina tradicional, a través del consumo de setas enteras, extractos de cuerpos fructíferos o micelio, y fracciones enriquecidas o compuestos aislados (3). Distintas investigaciones han logrado dilucidar que algunos polisacáridos de Lentinula edodes, Trametes versicolor y Agaricus bisporus pueden prevenir el cáncer de mama y de próstata, gracias a la inhibición de las enzimas 5-alfa-reductasa y aromatasa, responsables del crecimiento de los tumores cancerosos (12). Estudios más recientes demostraron que los polisacáridos de basidiomicetos pueden inhibir la proliferación celular a través de la inducción de la apoptosis, de tal manera que muchos de estos polisacáridos, como el Lentinan aislado de Lentinula edodes, ya se utilizan en la terapia contra el cáncer, específicamente en la prevención de la oncogénesis y la metástasis inducida químicamente (4). Por tanto el objetivo principal de la presente investigación, en su primera parte busca determinar la composición proximal de cuatro especies de hongos cultivadas en la Sabana de Bogotá (Lentinula edodes, Hericium erinaceus, Pleurotus ostreatus y Grifola frondosa), siguiendo metodologías propias del análisis proximal de alimentos proporcionados por la AOAC (Asociación de Químicos Analíticos Oficiales por sus siglas en inglés), a partir de la determinación del contenido de nutrientes de las setas estudiadas; se destaca el alto contenido de proteínas (8-22%), alto contenido de fibra dietética (5-9%), además de su bajo porcentaje de grasa (1-4%). Adicionalmente, se determinó que el contenido de polisacáridos en estos cuatro hongos macromicetos comestibles se encuentra entre 1 y 21%. La caracterización reológica de esta fracción permitió clasificarlos como fluidos no- Newtonianos de tipo pseudoplásticos. Finalmente a partir de la información obtenida se pudo concluir que las setas estudiadas son una buena alternativa alimenticia para incorporación en un alimento funcional, atendiendo a sus propiedades nutracéuticas y tecnológicas.
dc.description.abstractenglishThe term mushroom refers to a macrofungus with a distinctive fruiting body, which may be hypogeous or epigeous and large enough to be seen with the naked eye, therefore they can be easily harvested by hand. Edible mushrooms are higher filamentous fungi, generally of the phyla Basidiomycota and Ascomycota, which are widely recognised for their nutritional richness, low calorific value, taste and nutraceutical properties (1), including strengthening immune function, balancing blood glucose levels, reducing tumor growth and cancer risk (2). The benefits of its bioactive compounds have been harnessed in traditional medicine, through the consumption of whole mushrooms, extracts of fruiting bodies or mycelium, and enriched fractions or isolated compounds (3). Research has shown that polysaccharides from Lentinula edodes, Trametes versicolor and Agaricus bisporus can prevent breast and prostate cancer by inhibiting the enzymes 5-alpha-reductase and aromatase, which are responsible for the growth of cancerous tumors (12). More recent studies have shown that polysaccharides from basidiomycetes can inhibit cell proliferation through the induction of apoptosis, such that many of these polysaccharides, such as Lentinan isolated from Lentinula edodes, are already used in cancer therapy, specifically in the prevention of oncogenesis and chemically induced metastasis (4). Therefore, the main objective of this research, in its first part, is to determine the proximal composition of four species of mushrooms cultivated in the Sabana de Bogotá (Lentinula edodes, Hericium erinaceus, Pleurotus ostreatus and Grifola frondosa), following methodologies for the proximal analysis of food provided by the AOAC (Association of Official Analytical Chemists), based on the determination of the nutrient content of the mushrooms studied; The high protein content (8-22%), high dietary fiber content (5-9%) and low fat content (1-4%) are highlighted. In addition, the polysaccharide content of these four edible macromycete mushrooms was found to be between 1 and 21%. The rheological characterisation of this fraction allowed classifying them as non-Newtonian fluids of the pseudoplastic type. Finally, based on the information obtained, it was possible to conclude that the mushrooms studied are a good food alternative for incorporation into a functional food, due to their nutraceutical and technological properties.
dc.description.degreelevelPregradospa
dc.description.degreelevelQuímico Farmacéuticospa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad El Bosquespa
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosquespa
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.identifier.urihttps://hdl.handle.net/20.500.12495/12093
dc.language.isoes
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.grantorUniversidad El Bosquespa
dc.publisher.programQuímica Farmacéuticaspa
dc.relation.referencesHernández-Martínez, R.; Navarro-Blasco, I. (2015). Surveillance of aflatoxin content in dairy cow feedstuff from Navarra (Spain). Anim. Feed Sci. Technol, 200, 35–46
dc.relation.referencesRoth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. (2017) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study. Lancet. 2018; 392(10159): 1736–88. DOI: https://doi.org/10.1016/S0140-6736(18)32203-7
dc.relation.referencesProduction, consumption and MarkettingEdition: I Chapter: Nutritional and Medicinal values of MushroomsPublisher: Directorate of Mushroom Research, SolanEditors: Manjit Singh, B.Vijai, Shwet Kamal G.C. WakchauraeProject: Paddy straw genetic improvement
dc.relation.referencesKong, Y.; Yang, X.; Ding, Q.; Zhang, Y.Y.; Sun, B.G.; Chen, H.T.; Sun, Y. (2017) Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate. Food Res. Int. 2017, 102, 559–566
dc.relation.referencesKumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. (2017). Meat analogues: Health promising sustainable meat substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932
dc.relation.referencesKozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrovi ́c, P.; Niksic, M.; Vrvic, M.M.; Van Griensven, L. (2015) Antioxidants of edible mushrooms. Molecules 2015, 20, 19489–19525.
dc.relation.referencesHoeft B., Weber P., Eggersdorfer M.(2012) Micronutrients—A global perspective on intake, health benefits and economics. Int. J. Vitam. Nutr. Res. 2012;82:316–320. doi: 10.1024/0300-9831/a000125.
dc.relation.referencesLemieszek M, Rzeski W. (2012). Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Wspolczesna Onkol. 4:285–289.10.5114/wo.2012.30055
dc.relation.referencesLang, M. (2020). Consumer acceptance of blending plant-based ingredients into traditional meat-based foods: Evidence from the meat-mushroom blend. Food Qual. Prefer. 2020, 79, 103758.
dc.relation.referencesBruins, M. J., Van Dael, P., & Eggersdorfer, M. (2019). The Role of Nutrients in Reducing the Risk for Noncommunicable Diseases during Aging. Nutrients, 11(1), 85. https://doi.org/10.3390/nu11010085
dc.relation.referencesZhuang C, Kawagishi C, Harry G. (2005). Glycoprotein with antidiabetic, antihypertensive, antiobesity and antihyperlipidemic effects from Grifola frondosa and a method for preparing sample. United States Patent Application, no 7.214.778, 2005.
dc.relation.referencesNielsen, J.E., Beier, L., Otzen, D., Borchert, T.V., Frantzen, H.B., Andersen, K.V. and Svendsen, A. (1999), ‘‘Electrostatics in the active site of an -amylase’’, European J. Biochemistry, Vol. 264, pp. 816-24.
dc.relation.referencesDisis M. L. (2010). Immune regulation of cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 28(29), 4531–4538. https://doi.org/10.1200/JCO.2009.27.2146
dc.relation.referencesSteck SE, Murphy EA.(2020). Dietary patterns and cancer risk. Nat Rev Cancer. 2020 Feb;20(2):125-138. doi: 10.1038/s41568-019-0227-4. Epub 2019 Dec 17. PMID: 31848467.
dc.relation.referencesStamets, P. (2000). “Growing gourmet and medicinal mushrooms”. Canadá. McGraw-Hill.25p.
dc.relation.referencesVarki, A. (2017). Biological roles of glycans. Glycobiology, 27, (1), 3-49. https://doi.org/10.1093/glycob/cww086.
dc.relation.referencesDeshpande, N., Wilkins, M. R., Packer, N., & Nevalainen, H. (2008). Protein glycosylation pathways in filamentous fungi. Glycobiology, 18, (8), 626-637. https://doi.org/10.1093/glycob/cwn044
dc.relation.referencesWasser, S. P., & Weis, A. L. (1999). Medicinal properties of substances occurring in Higher Basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms, 1, 31–62.
dc.relation.referencesWasser, S.P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol , 60, 258–274.
dc.relation.referencesSun, Y., Shi, X., Zheng, X., Nie, S., & Xu, X. (2019). Inhibition of dextran sodium sulfate-induced colitis in mice by baker’s yeast polysaccharides. Carbohydrate Polymers, 207, 371-381. https://doi.org/10.1016/j.carbpol.2018.11.087
dc.relation.referencesRuytinx, J., Kafle, A., Usman, M., Coninx, L., Zimmermann, S. D., & Garcia, K. (2020). Micronutrient transport in mycorrhizal symbiosis; zinc steals the show. Fungal Biology.Reviews, 34, (1), 1-9. https://doi.org/10.1016/j.fbr.2019.09.001.
dc.relation.referencesUsuldin, S. R. A., Mahmud, N., Ilham, Z., Ikram, N. K. K., Ahmad, R., & Wan, W. A. A. Q. I. (2020). In-depth spectral characterization of antioxidative (1, 3)-β-D-glucan from the mycelium of an identified tiger milk mushroom Lignosus rhinocerus strain ABI in a stirred-tank bioreactor.
dc.relation.referencesDepartment of Environmental Sciences and Public Health, University of Gdańsk, 63 Wita Stwosza Str., 80-308 Gdańsk, Poland
dc.relation.referencesFaculty of Science and Technology, Athabasca University, Athabasca, Alberta, T9S 3A3, Canada
dc.relation.referencesMohammad-Fata Moradali; Hossein Mostafavi; Shirin Ghods; Ghorban-Ali Hedjaroude (2007). Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). , 7(6), 0–724. doi:10.1016/j.intimp.2007.01.008
dc.relation.referencesLiang J, Melican D, Cafro L, Palace G, Fisette L, et al.(1998) Enhanced clearance of a multiple antibiotic resistant Staphylococcus aureus in rats treated with PGG-glucan is associated with increased leukocyte counts and increased neutrophil oxidative burst activity. Int J Immunopharmacol 1998;20:595–614.
dc.relation.referencesVenkatesagowda, B. (2019). Enzymatic demethylation of lignin for potential biobased polymer applications. Fungal Biology Reviews, 33, (3-4), 190-224. https://doi.org/10.1016/j.fbr.2019.06.002.
dc.relation.referencesRoss GD, Vetvicka V, Yan J, Xia Y, Vetvickova J.(1999). Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology 1999; 42: 61-74.
dc.relation.referencesHamuro J, Chihara G. Lentinan. (1985). A T-cell oriented immunopotentiator: its experimental and clinical applications and possibile mechanism of immune modulation. W: Immunomodulation agents and their mechanisms. Fenichel RL, Chirigos MA (eds.). Dekker, New York 1985; 409-3.
dc.relation.referencesBurgaleta C, Territo MC, Quan SG, Golde DW. Glucanactivated macrophages: functional characteristics and surface morphology. J Reticuloendothel Soc 1978;23:195–204.
dc.relation.referencesEuropean Commission report on functional foods. Eu-ropean Union (2010). Available from: http://www.euro-sfaire.prd.fr/7pc/documents/1276590504_functional_foods_en_publi_ce. pdf (18.12.2015)
dc.relation.referencesLlanes, Andrés (2015). Alimentos funcionales y biotecnología. Revista Colombiana de Biotecnología, 17(1), 5–8. doi:10.15446/rev.colomb.biote.v17n1.50997
dc.relation.referencesBarbosa J. (2020). Occurrence and Possible Roles of Polysaccharides in Fungi and their Influence on the Development of New Technologies. Carbohydrate Polymers, (), 116613–. doi:10.1016/j.carbpol.2020.116613
dc.relation.referencesTrigos, A. (1998). Química de los Hongos. En “Producción de vitamina D2 a partir de hongos macromicetos: Aspectos científicos, técnicos y económicos”. Bogotá. Editor: Dr.Augusto Rivera Umaña. Editorial Guadalupe. 19p.
dc.relation.referencesMelendez, S. (2003). Análisis de alimentos, fundamentos y técnicas. Universidad Nacional Autónoma de México. Facultad de química. p. 36.
dc.relation.referencesMizuno, T. (1999). The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan (Review). International Journal of Medicinal Mushrooms, 1, 9-30.
dc.relation.referencesAOAC method 925.45 Ed. 18 (2004). AOAC International: Official methods of analysis. USA
dc.relation.referencesNTC 6383:2020. Determinación del contenido de fibra dietaria total (FDT) en los alimentos. Método enzimático / gravimétrico.
dc.relation.referencesGarcia , E y Fernandez, I (2018) Determinación de proteínas de un alimento por el método Kjeldahl. Valoración con un ácido fuerte. https://riunet.upv.es/bitstream/handle/10251/16338/Determinaci%C3%B3n%20de%20pro teinas.pdf.
dc.relation.referencesPalacios, I.(2015). “Extracción y caracterización de polisacáridos y estudio del perfil de compuestos volátiles en hongos comestibles”. Departamento de Biología Celular, Histología y Farmacología. Facultad de Medicina. Universidad de Valladolid, España.
dc.relation.referencesSetayesh, Z., Asoodeh, A. (2017). Biochemical Characterization of HL-7 and HL-10 Peptides Identified from Scorpion Venom of Hemiscorpius lepturus . International Journal of Peptide Research and Therapeutics, 24(3), 421–430. doi:10.1007/s10989-017-9625-1
dc.relation.referencesJiménez, R. A., Millán, D., Sosnik, A., & Fontanilla, M. R. (2022). Aloe vera–elutingcollagen I microgels: physicochemical characterization and in vitro biological performance. Materials Today Chemistry, 23. https://doi.org/10.1016/j.mtchem.2021.100722
dc.relation.referencesChang, S.-T. and P.G. Miles. (2004)., MUSHROOMS: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact. 2nd ed, ed. B. Ratón: FL: CRC Press. 1-26.
dc.relation.referencesBarros, L., et a (2008). lWild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 2008. 46(8): p. 2742-2747.
dc.relation.referencesDiez, V. A., & Álvarez, A. (2001). Compositional and Nutritional studies on two wild edible mushrooms from North West Spain. Food Chemistry, 75 (4), 417-442
dc.relation.referencesBadalyan SM. (2003) Edible and medicinal higher Basidiomycetes mushrooms as a source of natural antioxidants. International Journal of Medicinal Mushrooms 5, 153–163
dc.relation.referencesPavel, K. (2009). Chemical composition and nutritional value of European Species of Wild growing mushrooms: A review. Food Chemistry 113(1), 9-16
dc.relation.referencesBernás, E., Jaworska, G. & Lisiewska, Z. (2006). Edible mushrooms as a source of valuable constituents. Acta Sci. Pol, Technolo. Aliment., 5 (1), 5-20.
dc.relation.referencesAyaz, F. A., Torun, H., Colak, A., Sesli, E., Milson, M. & Glew, R.H. (2011). Macro and Microelement Contents of Fruiting Bodies of Wild-Edible Mushrooms Growing in the East Black Sea Region of Turkey. Food and Nutrition Sciences, 2, 53-59
dc.relation.referencesNIETO-RAMÍREZ, I. J., ROJAS-LUNA, R., & SUAREZ A., C. (2012). EVALUACIÓN DEL ESTÍPITE DE SHIITAKE COMO APORTANTE DE FIBRA Y BIOACTIVOS CON MIRAS A SU EMPLEO EN ALIMENTOS FUNCIONALES. Vitae, 19(1), S331-S333.
dc.relation.referencesHong JS, Kim YH, Lee KR, Kim MK, Cho CI, Part KKH. (2004) Composition of organic abd fatty acid in Pleurotus ostreatus, Lentinus edodes and Agaricus bisporus . Korean Journal of Food Science and Technology. 1988;20:100–105.
dc.relation.referencesBarros L, Baptista P, Correia DM, Casal S, Oliveira B, Ferreira. (2007) ICFR. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chemistry.;105(1):140–145. [Google Scholar]
dc.relation.referencesGreeshma, A., Sridhar, K. & Pavithra, M. (2018). Nutritional perspectives of an ectomycorrhizal edible mushroom Amanita of the southwestern India. Current Research in Environmental & Applied Mycology, 8 (1), 54-68
dc.relation.referencesPedneault, K., Angers, P. Gasselin, A. & Tweddell R. (2007). Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var. citrino- pileatus grown at different temperatures. Mycological Research, 111, 1128-1234.
dc.relation.referencesPecora RP.(1989). Determination of protein in edible mushroom (Boletus spp). Int J Food Sci Technol 24(2):207–10.
dc.relation.referencesStilinovic, N.; Capo, I.; Vukmirovic, S.; Raskovic, A.; Tomas, A.; Popovic, M.; Sabo, A.(2020).Chemical composition, nutritional profile and in vivo antioxidant properties of the cultivated mushroom Coprinus comatus. Royal Soc. Open Sci. 2020, 7, 200900.
dc.relation.referencesMorales, D.; Tejedor-Calvo, E.; Jurado-Chivato, N.; Polo, G.; Tabernero, M.; Ruiz-Rodriguez, A.; Largo, C.; Soler-Rivas, C.(2019).In vitro and in vivo testing of the hypocholesterolemic activity of ergosterol- and beta-glucan-enriched extracts obtained from shiitake mushrooms (Lentinula edodes). Food Funct. 2019, 10, 7325–7332.
dc.relation.referencesSu, C.H.; Lai, M.N.; Lin, C.C.; Ng, L.T. (2016).Comparative characterization of physicochemical properties and bioactivities of polysaccharides from selected medicinal mushrooms. Appl. Microbiol. Biotechnol. 2016, 100, 4385–4393.
dc.relation.referencesKalač, P. (2009). Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry, 113 (1), 9-16.
dc.relation.referencesKalač, Pavel (2013). A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. Journal of the Science of Food and Agriculture, 93(2), 209–218. doi:10.1002/jsfa.5960
dc.relation.referencesFukushima, M.; Ohashi, T.; Fujiwara, Y.; Sonoyama, K.; Nakano, M.(2001). Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp. Biol. Med. 2001, 226, 758–765.
dc.relation.referencesCohen, Nachshol; Cohen, Jacob; Asatiani, Mikheil D.; Varshney, Vinay K.; Yu, Hui-Tzu; Yang, Yi-Chi; Li, Yu-Hsuan; Mau, Jeng-Leun; Wasser, Solomon P. (2014). Chemical Composition and Nutritional and Medicinal Value of Fruit Bodies and Submerged Cultured Mycelia of Culinary-Medicinal Higher Basidiomycetes Mushrooms. International Journal of Medicinal Mushrooms, 16(3), 273–291. doi:10.1615/intjmedmushr.v16.i3.80
dc.relation.referencesLiwen Wang;Margaret A. Brennan;Wenqiang Guan;Jianfu Liu;Hui Zhao;Charles S. Brennan; (2021). Edible mushrooms dietary fibre and antioxidants: Effects on glycaemic load manipulation and their correlations pre-and post-simulated in vitro digestion . Food Chemistry, (), –. doi:10.1016/j.foodchem.2021.129320
dc.relation.referencesY.Z. Tao, L. Zhang, P.C.K. Cheung. (2006). Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides, Carbohydr. Res. 3412261–2269
dc.relation.referencesMacharia JM, Zhang L, et al. (2022) Are chemical compounds in medical mushrooms potent against colorectal cancer carcinogenesis and antimicrobial growth? Cancer Cell Int. 2022 Dec 1;22(1):379. doi: 10.1186/s12935-022-02798-2. PMID: 36457023; PMCID: PMC9714114.
dc.relation.referencesZhang, M., et al. (2007)., Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science & Technology, 2007. 18(1): p. 4-19.
dc.relation.referencesZhang, Y.,et al.(2011), Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocolloids.25(2): p. 196-206.
dc.relation.referencesZhu, F., Du, B., & Xu, B. (2014). Preparation and Characterization of Polysaccharides from Mushrooms. Polysaccharides, 1–16. doi:10.1007/978-3-319-03751-6_10-1
dc.relation.referencesVillares A, Mateo-Vivaracho L, Guillamón E.(2012).Structural features and healthy properties of polysaccharides occurring in mushrooms. Agriculture 2:452–471
dc.relation.referencesAlves, V. D., Freitas, F., Costa, N., Carvalheira, M., Oliveira, R., Gonc ̧ alves, M. P., et al. (2010). Effect of temperature on the dynamic and steady-shear rheology of a new microbial extracellular polysaccharide produced from glycerol byproduct. Carbohydrate Polymers, 79(4), 981–988.
dc.relation.referencesMurray, B. S. (2002). Interfacial rheology of food emulsifiers and proteins. Current Opinion in Colloid & Interface Science, 7(5), 426–431.
dc.relation.referencesVelasco, S. E., Areizaga, J., Irastorza, A., Duenas, M. T., Santamaria, A., & Munoz, ̃ M. E. (2009). Chemical and rheological properties of the -glucan produced by Pediococcus parvulus 2.6. Journal of Agricultural and Food Chemistry, 57(5), 1827–1834
dc.relation.referencesChoi, H., Mitchell, J. R., Gaddipati, S. R., Hill, S. E., & Wolf, B. (2014). Shear rheology and filament stretching behaviour of xanthan gum and carboxymethyl cellulose solution in presence of saliva. Food Hydrocolloids, 40, 71–75.
dc.relation.referencesXu, J.-L., Zhang, J.-C., Liu, Y., Sun, H.-J., & Wang, J.-H. (2016). Rheological properties of a polysaccharide from floral mushrooms cultivated in Huangshan Mountain. Carbohydrate Polymers, 139, 43–49. doi:10.1016/j.carbpol.2015.12.01110.1016/j.carbpol.2015.12.011
dc.relation.referencesTovar. E., (2010). “Evaluación de las propiedades reológicas de pulpas de frutas y productos derivados en una planta procesadora de jugos”. Trabajo de grado presentado ante la Universidad del Oriente como requisito parcial para optar al Título de Ingeniero Químico. Universidad de Oriente. Núcleo de Anzoátegui. Escuela de Ingeniería y Ciencias Aplicadas. Departamento de Ingeniería Química.
dc.relation.referencesBourne M. (2002). Food texture and viscosity: Concept and measurement. Food Science and Technology, International Series. 2da. Edición, Academic Press. New York, U.S.A. pp. 73-93, 77, 229-242
dc.relation.referencesPanchi, A.(2013). DETERMINACIÓN DE PARÁMETROS REOLÓGICOS EN BEBIDAS DE FRUTAS CON DIFERENTES CONCENTRACIONES DE SÓLIDOS SOLUBLES MEDIANTE EL USO DEL EQUIPO UNIVERSAL TA – XT2i. UNIVERSIDAD TÉCNICA DE AMBATO FACULTAD DE CIENCIA E INGENIERÍA EN ALIMENTOS.
dc.relation.referencesHu, Hewen & Teng, Xu & Zhang, Shanshan & Liu, Tingting & Li, Xiao & Wang, Dawei. (2021). Structural Characteristics, Rheological Properties, and Antioxidant Activity of Novel Polysaccharides from “Deer Tripe Mushroom”. Journal of Food Quality. 2021. 1-12. 10.1155/2021/6593293.
dc.relation.referencesS. B. Nair, A. N. Jyothi, M. S. Sajeev, and R. Misra. (2019) “Rheo-logical, mechanical and moisture sorption characteristics of cassava starch-Konjac glucomannan blend films,” Starch -St ̈arke, vol. 63, no. 11, pp. 728–739
dc.relation.referencesR. Moorehouse, M. D. Walkinshaw, and S. Arnott, (2020).“Xanthangum-molecular conformation and interactions,” in Extra-cellular Microbial Polysaccharides, P. Sanford and A. Laskin,Eds., pp. 90–102, ACS Publications, Washington, DC, USA
dc.relation.referencesGomez, A.(2009). Ácido linoleico conjugado. Un nuevo ingrediente funcional.Offarm https://www.elsevier.es/es-revista-offarm-4-articulo-acido-linoleico-conjugado-un-nuevo-13132747.
dc.relation.referencesOyetayo, F. L.; Akindahunsi, A. A.; Oyetayo, V. O. (2007). Chemical Profile and Amino Acids Composition of Edible Mushrooms Pleurotus sajor-caju. Nutrition and Health, 18(4), 383–389. doi:10.1177/026010600701800407
dc.relation.referencesPodkowa, A., Kryczyk-Poprawa, A., Opoka, W. et al.(2021). Culinary–medicinal mushrooms: a review of organic compounds and bioelements with antioxidant activity. Eur Food Res Technol 247, 513–533 . https://doi.org/10.1007/s00217-020-03646-1
dc.relation.referencesSchulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H. (2007). Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Arch Intern Med 2007; 167:956-65.
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacionalen
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.localAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectLentinula edodes
dc.subjectHericium erinaceus
dc.subjectGrifola frondosa
dc.subjectPleurotus ostreatus
dc.subjectAnálisis proximal
dc.subjectPolisacáridos
dc.subjectAlimento funcional
dc.subjectCaracterización reológica
dc.subject.ddc615.19
dc.subject.keywordsLentinula edodes
dc.subject.keywordsHericium erinaceus
dc.subject.keywordsGrifola frondosa
dc.subject.keywordsPleurotus ostreatus
dc.subject.keywordsProximate analysis
dc.subject.keywordsPolysaccharides
dc.subject.keywordsFunctional food
dc.subject.keywordsRheological characterisation
dc.titleDesarrollo de un prototipo de alimento funcional a base de polisacáridos de hongos macromicetos. Fase I: análisis proximal y extracción de la fracción polisacárida
dc.title.translatedDevelopment of a functional food prototype based on polysaccharides from macromycete fungi. Phase I: proximate analysis and extraction of the polysaccharide fraction.
dc.type.coarhttps://purl.org/coar/resource_type/c_7a1f
dc.type.coarversionhttps://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.type.localTesis/Trabajo de grado - Monografía - Pregrado

Archivos

Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Trabajo de grado.pdf
Tamaño:
597.23 KB
Formato:
Adobe Portable Document Format