• Browse
    • Login
    View Item 
    •   DSpace Home
    • Investigación
    • Artículos
    • View Item
    •   DSpace Home
    • Investigación
    • Artículos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Green's function approach to topological insulator junctions with magnetic and superconducting regions

    Thumbnail
    View/Open
    Oscar E. Casas, Shirley Gomez Paez_2020.pdf (1.578Mb)
    Share this
    TY - GEN T1 - A Green's function approach to topological insulator junctions with magnetic and superconducting regions UR - http://hdl.handle.net/20.500.12495/4592 PB - Institute of Physics Publishing AB - ER - @misc{20.500.12495_4592, author = {}, title = {A Green's function approach to topological insulator junctions with magnetic and superconducting regions}, year = {}, abstract = {}, url = {http://hdl.handle.net/20.500.12495/4592} }RT Generic T1 A Green's function approach to topological insulator junctions with magnetic and superconducting regions LK http://hdl.handle.net/20.500.12495/4592 PB Institute of Physics Publishing AB OL Spanish (121)
    Gestores bibliográficos
    Refworks
    Zotero
    BibTeX
    CiteULike
    Author
    Casas, Oscar E.
    Gómez Páez, Shirley
    Herrera, William J.
    Published in
    Journal of physics condensed matter, 1361-648X, Vol. 32, Nro. 18, 2020
    Published for
    Institute of Physics Publishing
    URI
    http://hdl.handle.net/20.500.12495/4592
    Source's URL
    https://iopscience.iop.org/article/10.1088/1361-648X/abafc9
    DOI
    https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1088%2F1361-648X%2Fabafc9&v=fd09ea67

    Citación

         
    Metadata
    Show full item record
    Documents PDF
    Abstract
    This work presents a Green’s function approach, originally implemented in graphene with well-defined edges, to the surface of a strong 3D Topological Insulator (TI) with a sequence of proximitizedsuperconducting (S) and ferromagnetic (F) surfaces. This consists of the derivation of the Green’sfunctions for each region by the asymptotic solutions method, and their coupling by a tight-bindingHamiltonian with the Dyson equation to obtain the full Green’s functions of the system. Thesefunctions allow the direct calculation of the momentum-resolved spectral density of states, the iden-tification of subgap interface states, and the derivation of the differential conductance for a widevariety of configurations of the junctions. We illustrate the application of this method for somesimple systems with two and three regions, finding the characteristic chiral state of the QuantumAnomalous Hall Effect (QAHE) at the NF interfaces, and chiral Majorana modes at the NS inter-faces. Finally, we discuss some geometrical effects present in three-region junctions such as weakFabry-P ́erot resonances and Andreev bound states.
    Keywords
    Andreev reflections
    Green functions
    Magnetic-superconducting junctions
    Majorana states
    Topological insulators
    Collections
    • Artículos [1715]

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    GTM statisticsGTM statistics
    Contacto Repositorio Institucional

    Teléfono: (571) 648 9000 Ext: 1546 - Correo: adminrepositorio@unbosque.edu.co

    Universidad El Bosque

    Instalaciones Bogotá

    Av. Cra. 9 No. 131 A - 02
    Línea gratuita:
    018000 113033
    PBX: (571) 648 9000

    Sede

    Instalaciones Chía

    Autopista Norte
    Km. 20 costado occidental
    Vía Chía - Bogotá
    Teléfono: 676 3110
    Línea gratuita: 018000 113033
    PBX: (571) 648 9000

    Sede Chía

    Admisiones

    PBX.: 648 9000
    Línea gratuita:
    018000 113033
    Edificio Fundadores
    Av. Cra. 9 No. 131 A - 02
    Skype: /uelbosque
    Correo electrónico:
    atencionalusuario@unbosque.edu.co

    Participante

    ACE Internationalization Lab

    Información Legal

    • Valores Pecuniarios
    • Estatuto General
    • Reglamento Estudiantil
    • Estatuto Docente
    • Política de Bienestar Universitario
    • Política de Tratamiento de Datos Personales
    • Términos y Condiciones de Uso del Sitio
    • Aviso de Privacidad
    • Información Tributaria

    Vigilada Mineducación. Personería Jurídica otorgada mediante resolución 11153 del 4 de agosto de 1978.