Show simple item record

dc.contributor.authorBenincasa, T.
dc.contributor.authorDonado Escobar, L. D.
dc.contributor.authorMoroşanu, C.
dc.date.accessioned2020-07-30T15:49:19Z
dc.date.available2020-07-30T15:49:19Z
dc.identifier.issn1366-5820spa
dc.identifier.urihttp://hdl.handle.net/20.500.12495/3619
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherTaylor and Francisspa
dc.relation.ispartofseriesInternational Journal of Control, 1366-5820, Vol 89, Nro 8, 2016, p 1523-1532spa
dc.relation.urihttps://www-tandfonline-com.ezproxy.unbosque.edu.co/doi/full/10.1080/00207179.2015.1137634spa
dc.titleDistributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditionsspa
dc.type.localArtículo de revista
dc.subject.keywordsBoundary value problems for nonlinear parabolic PDEspa
dc.subject.keywordsDynamic boundary conditionsspa
dc.subject.keywordsPontryagin's maximum principlespa
dc.subject.keywordsFractional steps methodspa
dc.subject.keywordsPhase changesspa
dc.identifier.doihttps://doi.org/10.1080/00207179.2015.1137634spa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.publisher.journalInternational Journal of Controlspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.type.driverinfo:eu-repo/semantics/article
dc.identifier.instnameinstname:Universidad El Bosque
dc.identifier.reponamereponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourlhttps://repositorio.unbosque.edu.co
dc.title.translatedDistributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditionsspa
dc.description.abstractenglishThis paper is concerned with an optimal control problem (P) (both distributed control as well as boundary control) for the nonlinear phase-field (Allen–Cahn) equation, involving a regular potential and dynamic boundary condition. A family of approximate optimal control problems (Pϵ) is introduced and results for the existence of an optimal control for problems (P) and (Pϵ) are proven. Furthermore, the convergence result of the optimal solution of problem (Pϵ) to the optimal solution of problem (P) is proved. Besides the existence of an optimal control in problem (Pϵ), necessary optimality conditions (Pontryagin's principle) as well as a conceptual gradient-type algorithm to approximate the optimal control, were established in the end.spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightsAcceso abiertospa
dc.date.issued2016-02-12


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record