ANEXOS

Anexo 1. Presupuesto

	Presupuesto General										
			Valor por		Asignación de						
Rubro	Detalle	Cant	unidad	Valor total	Gastos						
		Evalua	ción								
Quitosano marca	Quitosano por	,	#040.000	N1/A	I be have not do at						
Santacruz	100g	1	\$346.000	N/A	Universidad						
Cajas de Petri	A D	40	\$2.000	N/A	Universidad						
	Agar Papa Dextrosa por										
PDA	100g	1	\$135.000	N/A	Universidad						
Cepa Fusarium	1009	•	Ψ100.000	14//	Cinvoloidad						
oxysporum		1	N/A	N/A	Universidad						
Asa microbiológica		1	\$1.000	\$1.000	Estudiante						
Aguja de disección		1	\$2.000	\$2.000	Estudiante						
	Ácido acético	_									
Ácido Acético	glacial por 100ml	1	\$150.000	N/A	Universidad						
Cepa Trichoderma		1	N/A	N/A	Universidad						
Azul da la stafanal	1ml de azul de	4	¢ 2 000	¢ 2 000	Linivoroidad						
Azul de lactofenol	lactofenol Microscopio	1	\$ 2.000	\$ 2.000	Universidad						
Microscopio Óptico	óptico olympus	1	N/A	N/A	Universidad						
Balanza analítica		1	N/A	N/A	Universidad						
	Tomate chonto										
	Calima tipo Santa										
Plántulas de tomate	clara	180	\$ 310	\$55.800	Estudiante						
Cuelo	Para trasplante x	2	£ 04 000	¢42.000	Fatualianta						
Suelo Bolsa para esterilizar	15Kg Caja x 200		\$ 21.900	\$43.800	Estudiante						
material quirúrgico	unidades	1	\$ 30.000	\$30.000	Estudiante						
Palos de madera de		-	4 00.000	+ + - - - - - - - - - -							
4x4cm x 3mt		6	\$ 18.000	\$108.000	Estudiante						
Tablas de madera	3mtx40cm	4	\$ 35.000	\$140.000	Estudiante						
Plástico de											
invernadero		1	\$ 30.000	\$ 30.000	Estudiante						
Mertect	Frasco de 100ml	1	\$ 27.000	\$ 27.000	Estudiante						
Bandejas metálicas		55	\$ 1.000	\$ 55.000	Estudiante						
Recipientes de icopor	Empaque x 20	_	# 4.000	# 20 200							
de 25 oz Software para el	unidades	8	\$ 4.000	\$ 32.000	Estudiante						
análisis estadístico	SPSS stadistic	0	N/A	N/A	Estudiante						
สเเสแจเจ ซอเสนเจแบบ	or statistic	U	IN/ <i>I</i> T	13/7	Lotudiante						

	Identificaci	ón y C	aracterización						
Servicios de microscopia	Análisis de laboratorio con TEM por hora	2	\$220.000	\$ 440.000	Estudiante				
Servicios de preparación de	Inclusión en	7	·						
muestra	plástico	/	\$188.000	\$1.316.000	Estudiante				
	0	tros ga	astos						
Papelería portafolio	Material para presentar avances y el portafolio	1	\$ 30.000	\$ 30.000	Estudiante				
_	Transporte a Madrid,		•						
Transportes	Cundinamarca	30	\$ 6.800	\$ 204.000	Estudiante				
Imprevistos		1	\$ 300.000	\$300.000	Estudiante				
	Total \$2.816.600								

3. Evaluación del avance del cronograma								
Actividad	Fecha real de inicio	Fecha real de finalización						
Caracterización Microscopia y microscópica del hongo	20/09/2018	20/09/2018						
Curva de crecimiento	19/09/2018	3/10/2018						
Preparación de los medios de cultivo y tratamientos	17/09/2018	18/09/2018						
Evaluación de los tratamientos frente al hongo (in vitro)	8/10/2018	En curso						
Toma de datos de crecimiento micelial y esporulación en las pruebas <i>in vitro</i>	8/10/2018	30/01/2019						
Identificación de los resultados prueba in vitro	25/01/2019	10/04/2019						
Procesamiento estadístico de los datos de la prueba <i>in vitro</i> con el test ANOVA	9/02/2019	25/02/2019						
Obtención de Plántulas para la escala de síntomas	19/11/2018	29/11/2018						
Escalamiento de síntomas	21/11/2018	19/12/2018						
Adquisición de Plántulas para la evaluación	2/11/2018	3/12/2018						
Inoculación de del hongo a las plantas	3/12/2018	4/12/2018						
Preparación de los tratamientos para la prueba In vivo	5/12/2018	5/12/2018						
Aplicación de los tratamientos para la prueba In vivo	6/12/2018	6/12/2018						
Toma de datos de las pruebas <i>in vivo</i> , según escala de síntomas	17/12/2018	23/01/2019						
Caracterización de los resultados prueba in vivo	25/01/2019	15/04/19						
Procesamiento estadístico de los datos de la prueba <i>in vivo</i> con el test ANOVA	25/02/2019	12/04/2019						
Análisis de los datos obtenidos de las microcopias	10/04/2019	6/05/2019						
Generación informe de la eficacia de las nanopartículas como agente antifúngico teniendo en cuenta los resultados del test ANOVA	15/02/2019	6/05/2019						
Desarrollo del protocolo para la aplicación y manejo del fungicida basado en las nanopartículas de quitosano+TPP+PEG	1/02/2019	6/05/2019						
Desarrollo del documento de trabajo de grado	15/10/2018	6/05/19						
Correcciones del documento	2/03/2019	6/05/2019						

Anexo 3. Registro de medidas de la curva de crecimiento

Medida		Día																			
(mm)		1				2			3			4				5					
Caja	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
1	5	5	5	5	11	11	11	12	20	25	27	22	30	36	35	33	49	54	53	51	
2	5	5	5	5	13	13	14	12	21	23	24	23	31	34	33	32	48	49	50	48	
3	5	5	5	5	12	12	13	13	20	19	21	20	28	29	29	30	45	45	45	45	
4	5	5	5	5	12	12	11	13	19	19	20	20	30	30	30	31	45	46	46	47	
5	5	5	5	5	11	12	12	12	19	20	21	20	29	30	31	30	45	48	48	47	
6	5	5	5	5	12	12	12	12	19	21	20	20	31	33	31	30	48	49	47	48	
7	5	5	5	5	11	12	12	12	20	20	19	19	30	30	31	30	48	48	48	48	
	19	9/0	9/1	8	20/09/18				21/	21/09/18 2					22/09/18				24/09/18		

Medida		Día																		
(mm)				8				9				10								
Caja	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	67	72	70	69	77	79	79	77	82	85	84	83	82	85	84	84	90	90	90	90
2	68	66	66	65	73	74	75	74	80	81	82	81	80	81	82	81	90	90	90	90
3	56	56	57	55	61	61	61	60	66	66	66	67	66	66	66	67	77	79	78	77
4	61	62	63	62	70	71	72	71	80	79	82	81	80	79	82	81	90	90	90	90
5	64	64	65	64	72	75	75	73	83	83	83	84	83	83	83	84	90	90	90	90
6	63	63	62	61	68	69	67	67	74	74	72	72	74	74	72	75	77	79	78	79
7	64	63	63	62	71	71	75	70	79	80	77	79	79	80	77	79	90	90	90	90
	26/	09/1	18	8 27/09/18					29/09/18 01/1					01/10/18 03/10/18						

Tabla 1. Resultados del diámetro de crecimientos para el ensayo de Dilución en Agar

Medida (mm)							Día	a de	eva	alua	ción					
Cajas		1	1		2 ((12/	10/1	8)	3 ((18/	10/1	8)	4 ((19/	10/1	8)
QNP1	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	5	5	5	5	39	38	40	39	80	79	80	78	84	83	84	84
2	5	5	5	5	38	37	39	38	79	79	80	77	82	83	81	78
3	5	5	5	5	38	36	40	38	82	82	80	81	83	82	82	81
QNP 2																
1	5	5	5	5	37	36	37	37	76	74	75	77	77	77	79	80
2	5	5	5	5	36	35	37	37	77	75	75	77	81	79	79	81
3	5	5	5	5	38	38	38	37	66	66	66	63	70	70	70	68
QC1-Chi 0.5m	ng/	ml														
1	5	5	5	5	32	32	32	33	75	76	77	76	79	80	80	80
2	5	5	5	5	33	34	34	32	77	78	76	72	81	82	80	78
3	5	5	5	5	38	35	34	35	79	75	78	79	80	81	80	78
QC2-Chi 2mg	/m	1														
1	5	5	5	5	36	36	35	36	82	80	80	80	83	84	82	84
2	5	5	5	5	37	38	37	37	77	80	79	78	77	80	79	78
3	5	5	5	5	38	37	36	36	77	80	78	78	77	80	78	78
F1-Mertect 0.5	5 n	ng/	ml													
1	5	5	5	5	24	26	25	24	27	27	25	26	31	31	30	32
2	5	5	5	5	31	30	30	30	77	76	77	77	77	76	77	77
3	5	5	5	5	31	31	29	30	70	70	71	69	70	70	71	69
F2- Mertect 2	mg	/m														
1	5	5	5	5	9	9	1	11	37	36	38	38	42	40	42	41
2	5	5	5	5	12	12	10	11	42	43	41	40	45	46	45	46
3	5	5	5	5	16	15	16	15	23	22	24	22	23	22	24	22
Ac. Acético 0.	15	%														
1	5	5	5	5	29	27	28	28	83	78	78	79	86	83	83	83
2	5	5	5	5		30				80				80		79
3	5	5	5	5	27	26	27	26	80	79	79	76	80	79	80	80
Control negati												1				
1	5	5	5	5	35	36	37	36	84	82	84	85	90	90	90	90
2	5	5	5	5	37	35	40	37	82	81	80	82		90	90	90
3	5	5	5	5	36	35	37	37	84	80	79	80	90	90	90	90

Tabla 2. Resultados del diámetro de crecimientos para el ensayo de inoculación con suspensión de conidios en pozos de agar

Medida (mm)			<u> </u>					. p c	Día		. <u>g</u>					
Cajas		1	1		2	(12/	10/1	8)	3 ((18/	10/1	8)	4	(19/	10/1	8)
QNP1	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	5	5	5	5	36	36	37	37	80	79	80	78	83	81	84	85
2	5	5	5	5	38	37	37	37	79	79	80	77	79	79	80	77
3	5	5	5	5	35	37	37	36	82	82	80	81	83	82	82	82
QNP 2	•									1						
1	5	5	5	5	37	37	37	36	76	74	75	77	83	84	85	86
2	5	5	5	5	36	36	37	38	77	75	75	77	80	80	81	80
3	5	5	5	5	34	34	35	35	66	66	66	63	82	82	82	83
QC1-Chi 0.5n	ng/	ml														
1	5	5	5	5	43	42	42	41	83	84	82	84	84	85	85	84
2	5	5	5	5	18	19	19	17	66	67	69	67	72	75	72	75
3	5	5	5	5	17	16	16	16	70	69	67	68	75	75	73	73
QC2-Chi 2mg	/m															
1	5	5	5	5	42	48	46	46	80	78	80	80	88	86	84	80
2	5	5	5	5	38	39	39	39	82	82	83	83	84	82	83	83
3	5	5	5	5	38	39	39	38	82	81	84	84	84	81	84	84
F1-Mertect 0.	5 n	_														
1	5	5	5	5	5	5	5	5	25	26	24	24	30	30	30	30
2	5	5	5	5	5	5	5	5	26	30	30	28	32	36	36	36
3	5	5	5	5	5	5	5	5	22	24	22	22	28	30	28	28
F2-Mertect 2n	_															
1	5	5	5	5	5	5	5	5	20	20	22	22	24	24	24	24
2	5	5	5	5	5	5	5	5	22	22	22	22	26	26	28	26
3	5	5	5	5	5	5	5	5	30	24	24	24	36	36	34	34
Ac. Acético 0.																
1	5	5	5	5	4	4	4	4	52	53	53	53	60	63	63	62
2	5	5	5	5							72		80		76	78
3	5	5	5	5	24	23	24	24	66	65	67	67	70	71	73	72
Control negat																
1	5	5	5	5	38		38		83	82		82		90	90	90
2	5	5	5	5	38		37	38	82		82	84		90	90	90
3	5	5	5	5	39	39	39	40	87	86	88	86	90	90	90	90

Tabla 3. Resultados del diámetro de crecimientos para el ensayo de inoculación con Discos de micelio

Medida (mm)									Día	a						
Cajas		,	1		2 ((12/	10/1	8)	3 ((18/	10/1	8)	4	(19/	10/1	8)
QNP1	1	2	ვ	4	1	2	3	4	1	2	3	4	1	2	3	4
1	5	5	5	5	36	36	36	40	80	79	79	79	83	82	83	83
2	5	5	5	5	37	35	37	36	83	82	80	80	85	84	85	84
3	5	5	5	5	37	36	38	37	80	80	80	80	83	83	82	83
QNP 2																
1	5	5	5	5	38	38	38	36	87	84	82	86	84	82	85	84
2	5	5	5	5	36	37	39	37	79	78	79	80	85	85	85	83
3	5	5	5	5	37	36	37	37	82	81	79	81	82	81	79	81
QC1-Chi 0.5m	ng/	ml														
1	5	5	5	5	37	38	38	39	82	84	84	84	85	86	85	85
2	5	5	5	5	40	38	38	41	80	80	80	82	82	83	83	82
3	5	5	5	5	40	39	38	39	83	82	84	84	85	84	84	85
QC2-Chi 2mg	/m															
1	5	5	5	5	39	40	42	41	82	83	81	83	82	85	84	83
2	5	5	5	5	39	38	38	38	79	80	80	80	81	82	83	82
3	5	5	5	5	38	38	39	39	80	82	81	82	80	82	84	83
F1-Mertect 0.	5 n	ng/	ml													
1	5	5	5	5	13	14	14	14	34	35	34	34	38	38	38	39
2	5	5	5	5	11	12	12	11	33	34	33	32	37	38	37	37
3	5	5	5	5	13	12	12	12	33	33	33	33	37	36	38	37
F2-Mertect 2n	ng/	ml														
1	5	5	5	5	11	11	10	11	60	62	60	61	68	68	69	69
2	5	5	5	5	11	10	10	10	59	57	58	58	67	66	65	67
3	5	5	5	5	11	11	11	11	52	52	50	54	58	60	56	56
Ac. Acético 0.	15	%														
1	5	5	5	5	27	33	31	29	71	70	72	73	77	75	77	80
2	5	5	5	5	30	30	31	30	76	77	78	77	79	80	80	80
3	5	5	5	5	5	5	5	5	40	39	40	39	48	47	47	48

$$PICR = \frac{R1-R2}{R1} * 100\%$$
 (1)(Juniors et al., 2017)

- R1 crecimiento radial del no influenciado
- R2 crecimiento radial influenciado

Anexo 6. Método de conteo de conidios en Cámara de Neubauer

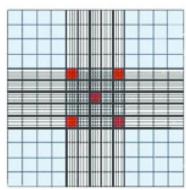


Figura 1. Esquema de conteo en cámara de Neubauer. Conteo en el 5to cuadrante para células conidiogénicas, se cuenta 5 recuadros y se utiliza la formula (Martinez, 2011).

Conteo de conidios/ml =
$$\frac{\sum N^{\circ} \text{ de conidios contados}*Dilucion}{1x10^{-4}ml*\frac{N^{\circ} \text{ de cuadros}}{Total \text{ de } N^{\circ} \text{ de cuadros}}}$$
(2)

Tabla 1. Resultados del Tukey (nivel de significancia) del ensayo de Dilución en Agar

Intervalo de confi	anza al 95%	Sig.					
Variable depe	endiente	PICR día 1	PICR día 2				
QNP1	QNP2	1,000	0,992				
	QNP3	0,212	0,992				
	Q0.5	0,982	1,000				
	Q2.0	1,000	1,000				
	M0.5	0,568	0,348				
	M2.0	0,002	0,004				
	A. Acético	0,549	1,000				
QNP2	QNP1	1,000	0,992				
	QNP3	0,319	1,000				
	Q0.5	0,998	1,000				
	Q2.0	1,000	0,995				
	M0.5	0,727	0,785				
	M2.0	0,003	0,018				
	A. Acético	0,709	0,995				
Q0.5	QNP1	0,982	1,000				
	QNP2	0,998	1,000				
	QNP3	0,663	1,000				
	Q2.0	0,999	1,000				
	M0.5	0,967	0,530				
	M2.0	0,011	0,007				
	A. Acético	0,961	1,000				
Q2.0	QNP1	1,000	1,000				
	QNP2	1,000	0,995				
	QNP3	0,349	0,995				
	Q0.5	0,999	1,000				
	M0.5	0,762	0,382				
	M2.0	0,004	0,004				
	A. Acético	0,745	1,000				
M0.5	QNP1	0,568	0,348				
	QNP2	0,727	0,785				
	QNP3	0,994	0,787				
	Q0.5	0,967	0,530				
	Q2.0	0,762	0,382				
	M2.0	0,073	0,267				
	A. Acético	1,000	0,377				

M2.0	QNP1	0,002	0,004
	QNP2	0,003	0,018
	QNP3	0,252	0,018
	Q0.5	0,011	0,007
	Q2.0	0,004	0,004
	M0.5	0,073	0,267
	A. Acético	0,077	0,004
A. Acético	QNP1	0,549	1,000
	QNP2	0,709	0,995
	QNP3	0,996	0,995
	Q0.5	0,961	1,000
	Q2.0	0,745	1,000
	M0.5	1,000	0,377
	M2.0	0,077	0,004

Tabla 2. Resultados del Tukey (nivel de significancia) del ensayo de Inoculación con pozos

confianza al 95%	Si	g.
dependiente	PICR día 1	PICR día 2
QNP2	1,000	0,735
QNP3	1,000	0,980
Q0.5	0,449	0,820
Q2.0	0,990	1,000
M0.5	0,000	0,000
M2.0	0,000	0,000
A. Acético	0,023	0,072
QNP1	1,000	0,735
QNP3	1,000	0,250
Q0.5	0,520	1,000
Q2.0	0,978	0,516
M0.5	0,001	0,000
M2.0	0,001	0,000
A. Acético	0,029	0,715
QNP1	0,449	0,820
QNP2	0,520	1,000
QNP3	0,280	0,318
Q2.0	0,135	0,611
M0.5	0,023	0,000
M2.0	0,023	0,000
	dependiente QNP2 QNP3 Q0.5 Q2.0 M0.5 M2.0 A. Acético QNP1 QNP3 Q0.5 Q2.0 M0.5 M2.0 A. Acético QNP1 QNP3 Q0.5 M2.0 A. Acético QNP1 QNP3 A. Acético QNP1 QNP3 QNP3 QNP3 Q2.0 M0.5	dependiente PICR día 1 QNP2 1,000 QNP3 1,000 Q0.5 0,449 Q2.0 0,990 M0.5 0,000 M2.0 0,000 A. Acético 0,023 QNP1 1,000 QNP3 1,000 Q0.5 0,520 Q2.0 0,978 M0.5 0,001 M2.0 0,001 A. Acético 0,029 QNP1 0,449 QNP2 0,520 QNP3 0,280 Q2.0 0,135 M0.5 0,023

	A. Acético	0,651	0,621	
Q2.0	QNP1	0,990	1,000	
	QNP2	0,978	0,516	
	QNP3	1,000	0,999	
	Q0.5	0,135	0,611	
	M0.5	0,000	0,000	
	M2.0	0,000	0,000	
	A. Acético	0,005	0,036	
M0.5	QNP1	0,000	0,000	
	QNP2	0,001	0,000	
	QNP3	0,000	0,000	
	Q0.5	0,023	0,000	
	Q2.0	0,000	0,000	
	M2.0	1,000	0,999	
	A. Acético	0,449	0,000	
M2.0	QNP1	0,000	0,000	
	QNP2	0,001	0,000	
	QNP3	0,000	0,000	
	Q0.5	0,023	0,000	
	Q2.0	0,000	0,000	
	M0.5	1,000	0,999	
	A. Acético	0,449	0,000	
A. Acético	QNP1	0,023	0,072	
	QNP2	0,029	0,715	
	QNP3	0,012	0,013	
	Q0.5	0,651	0,621	0,602
	Q2.0	0,005	0,036	0,042
	M0.5	0,449	0,000	0,000
	M2.0	0,449	0,000	0,000

Tabla 3. Resultados del Tukey (nivel de significancia) del ensayo de Inoculación con discos de micelio

Intervalo	de confianza al 95%	Sig.		
Varial	ble dependiente	PICR día 1	PICR día 2	
QNP1	QNP2	1,000	1,000	
	QNP3	0,747	0,921	
	Q0.5	1,000	1,000	
	Q2.0	1,000	1,000	
	M0.5	0,039	0,001	

	M2.0	0,023	0,185
	A. Acético	0,387	0,482
QNP2	QNP1	1,000	1,000
	QNP3	0,712	0,864
	Q0.5	1,000	1,000
	Q2.0	1,000	1,000
	M0.5	0,034	0,001
	M2.0	0,020	0,142
	A. Acético	0,356	0,397
QNP3	QNP1	0,747	0,921
	QNP2	0,712	0,864
	Q0.5	0,574	0,816
	Q2.0	0,545	0,884
	M0.5	0,509	0,010
	M2.0	0,362	0,784
	A. Acético	0,998	0,987
Q0.5	QNP1	1,000	1,000
	QNP2	1,000	1,000
	QNP3	0,574	0,816
	Q2.0	1,000	1,000
	M0.5	0,022	0,001
	M2.0	0,013	0,118
	A. Acético	0,254	0,344
Q2.0	QNP1	1,000	1,000
	QNP2	1,000	1,000
	QNP3	0,545	0,884
	Q0.5	1,000	1,000
	M0.5	0,020	0,001
	M2.0	0,012	0,155
	A. Acético	0,235	0,423
M0.5	QNP1	0,039	0,001
	QNP2	0,034	0,001
	QNP3	0,509	0,010
	Q0.5	0,022	0,001
	Q2.0	0,020	0,001
	M2.0	1,000	0,176
	A. Acético	0,857	0,053
M2.0	QNP1	0,023	0,185
	QNP2	0,020	0,142
	QNP3	0,362	0,784

	Q0.5	0,013	0,118
	Q2.0	0,012	0,155
	M0.5	1,000	0,176
	A. Acético	0,719	0,997
A. Acético	QNP1	0,387	0,482
	QNP2	0,356	0,397
	QNP3	0,998	0,987
	Q0.5	0,254	0,344
	Q2.0	0,235	0,423
	M0.5	0,857	0,053
	M2.0	0,719	0,997

Anexo 8. Datos registrados de la evaluación in vivo.

Tabla1. Registro de datos de severidad (según la escala) de la podredumbre de pie de tomate causada por *F. solani* para los tratamientos que se inocularon sin herida y por Root Dipping.

Tratami	ento	QNP2 RD	QNP 2 D	QC RD	QC D	F RD	F D	Cr RD	Cr D	Cb RD	Cb D	Cn
Día de evaluació	planta											
n												
1-7dias	1	0	0	0	0	0	0	1	0	0	0	1
	2	0	0	0	0	0	0	1	1	0	0	0
	3	0	0	0	0	0	1	1	0	0	0	0
2-15dias	1	0	2	0	1	0	0	1	1	0	0	1
	2	0	5	0	0	3	1	1	1	0	0	0
	3	1	0	0	1	3	3	1	0	0	0	1
3-22dias	1	5	4	1	1	5	4	1	0	1	0	2
	2	2	5	1	1	5	4	1	1	1	0	1
	3	2	1	1	1	5	5	1	1	1	1	1
4-30 días	1	5	5	1	1	5	5	1	1	1	1	1
	2	2	5	1	2	5	5	1	3	2	2	1
	3	2	2	1	1	5	5	1	3	1	2	3
5-37dias	1	5	5	2	2	5	5	1	1	1	2	2
	2	2	5	3	2	5	5	2	2	3	2	1
	3	3	2	2	2	5	5	3	3	1	2	3
6-45 días	1	5	5	2	3	5	5	1	2	2	2	1
	2	4	5	3	3	5	5	3	2	3	2	3
	3	4	2	2	3	5	5	4	2	3	2	3

Tabla2. Registro de datos de severidad (según la escala) de la podredumbre de pie de tomate causada por *F. solani* para los tratamientos que se inocularon sin herida y por Drench

Tratami	ento	QNP2 RD	QNP 2 D	QC RD	QC D	F RD	F D	Cr RD	Cr D	Cb RD	Cb D	Cn
Día de evaluació	planta											
n												
1-7dias	1	0	0	0	0	0	1	1	0	1	4	0
	2	0	0	0	0	1	0	0	1	1	0	1
	3	0	0	1	0	0	1	0	1	0	1	0
2-15dias	1	2	2	1	1	4	1	3	1	5	3	1
	2	3	3	4	1	4	1	3	1	1	3	1
	3	3	2	3	1	2	1	3	1	1	1	2
3-22dias	1	2	5	3	3	5	5	5	1	5	5	2
	2	5	4	5	3	5	5	5	1	5	3	2
	3	5	4	2	1	5	5	5	1	1	1	4
4-30 días	1	5	5	3	3	5	5	5	3	5	5	2
	2	5	4	4	4	5	5	5	2	5	2	1
	3	5	4	4	1	5	5	5	2	3	1	5
5-37dias	1	5	5	5	5	5	5	5	2	5	5	5
	2	5	5	5	5	5	5	5	2	5	2	3
	3	5	5	5	1	5	5	5	2	4	1	5
6-45 días	1	5	5	5	5	5	5	5	3	5	5	5
	2	5	5	5	5	5	5	5	2	5	3	4
	3	5	5	5	1	5	5	5	2	5	2	5

Tabla 3. Registro de datos de severidad (según la escala) de la podredumbre de pie de tomate causada por *F. solani* para los tratamientos que se inocularon con herida y por Root Dipping

Tratami	ento	QNP2 RD	QNP 2 D	QC RD	QC D	F RD	F D	Cr RD	Cr D	Cb RD	Cb D	Cn
Día de evaluació	planta											
n												
1-7dias	1	0	0	0	0	1	0	0	0	0	0	0
	2	0	0	0	0	0	0	0	0	0	0	0
	3	0	0	0	0	0	0	0	0	0	0	0
2-15dias	1	0	1	0	0	2	3	0	3	0	1	0
	2	0	0	0	0	1	0	4	1	4	0	0
	3	0	1	1	1	2	0	0	0	1	1	0
3-22dias	1	1	1	2	1	5	5	0	3	4	2	3
	2	1	1	2	1	5	5	5	2	3	1	2
	3	1	1	2	1	5	5	1	0	3	2	1
4-30 días	1	2	1	2	1	5	5	2	5	5	1	3
	2	2	1	3	1	5	5	5	2	3	1	1
	3	1	2	2	1	5	5	2	5	2	1	1
5-37dias	1	1	2	3	1	5	5	4	5	5	1	2
	2	1	1	5	2	5	5	5	3	3	2	2
	3	2	2	5	2	5	5	2	5	1	3	1
6-45 días	1	2	3	4	3	5	5	5	5	5	3	3
	2	1	1	5	2	5	5	5	1	4	2	3
	3	3	4	5	2	5	5	3	5	1	2	2

Tabla 4. Registro de datos de severidad (según la escala) de la podredumbre de pie de tomate causada por *F. solani* para los tratamientos que se inocularon con herida y por Drench.

Tratami	ento	QNP2 RD	QNP 2 D	QC RD	QC D	F RD	F D	Cr RD	Cr D	Cb RD	Cb D	Cn
Día de evaluació	planta											
n												
1-7dias	1	0	0	0	1	0	1	1	3	0	1	0
	2	0	0	0	0	0	0	1	1	0	0	0
	3	0	0	0	0	1	1	1	3	0	0	0
2-15dias	1	3	1	3	3	2	2	5	5	1	1	0
	2	5	2	3	5	1	3	2	3	1	1	0
	3	4	1	5	3	5	3	2	5	0	1	0
3-22dias	1	5	1	5	5	5	3	5	5	1	1	1
	2	5	2	5	5	5	5	3	5	2	1	2
	3	5	1	5	3	5	5	5	5	2	1	1
4-30 días	1	5	1	5	5	5	5	5	5	1	1	1
	2	5	4	5	5	5	5	2	5	1	1	2
	3	5	3	5	5	5	5	5	5	1	1	1
5-37dias	1	5	3	5	5	5	5	5	5	1	1	1
	2	5	5	5	5	5	5	4	5	1	1	2
	3	5	3	5	5	5	5	5	5	1	2	1
6-45 días	1	5	3	5	5	5	5	5	5	2	1	1
	2	5	5	5	5	5	5	5	5	3	1	2
	3	5	4	5	5	5	5	5	5	2	2	2

Registro fotográfico del ensayo de las plantas que fueron inoculadas sin herida y por Root Dipping. A: QNP2/RD. B. QNP2/D. C. Qc/RD D. Qc/D. E.F/RD. F. F/D. G.Cr/RD. H. Cr/D. I. Cb/RD. J. Cb/D. K. Cn.

17-12-18

24-12-18

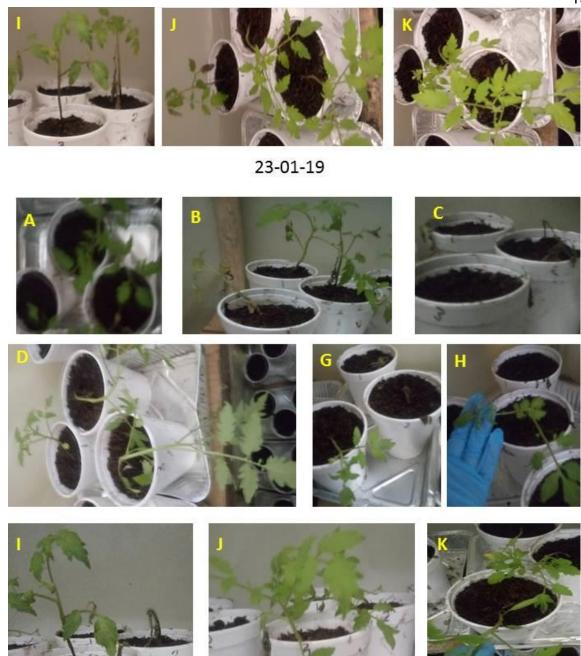
08-01-18

16-01-18

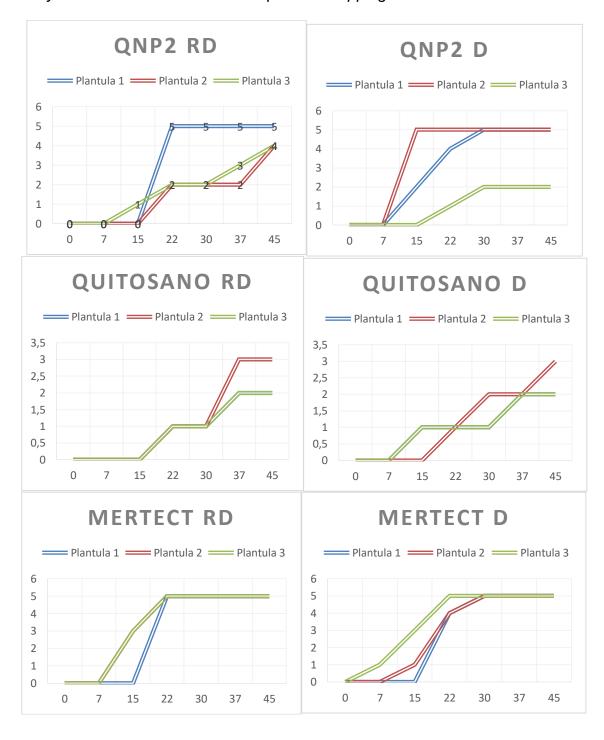
23-01-18

Registro fotográfico del ensayo de las plantas que fueron inoculadas con herida y por Root Dipping. A: QNP2/RD. B. QNP2/ D. C. Qc/RD D. Qc/D. E.F/RD. F. F/D. G.Cr/RD. H. Cr/D. I. Cb/RD. J. Cb/D. K. Cn.

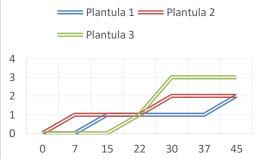
17-12-18

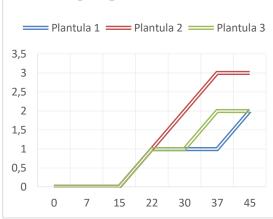


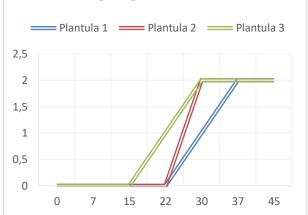
08-01-19

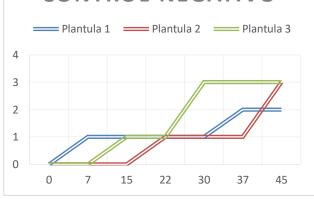


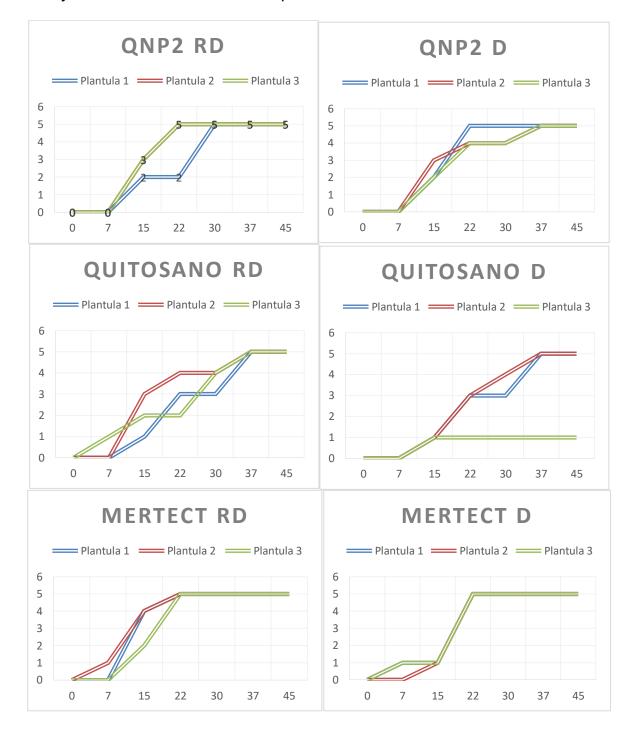
Anexo 10. Registro fotográfico del invernadero


Ensayo donde se inoculo sin herida por Root Dipping

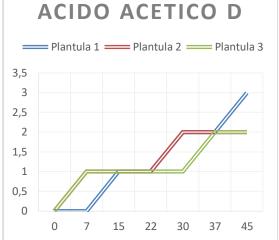


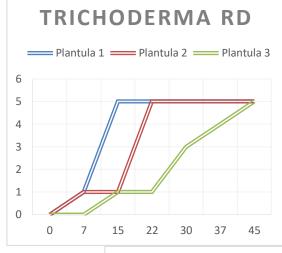

ACIDO ACETICO D

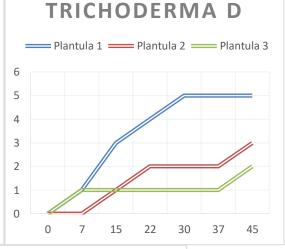

TRICHODERMA RD

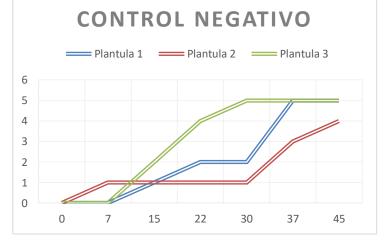


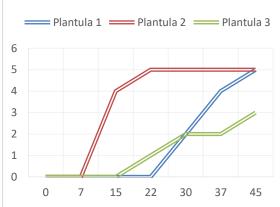
TRICHODERMA D

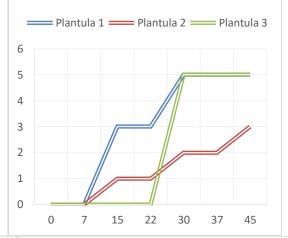


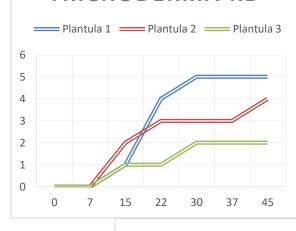

CONTROL NEGATIVO



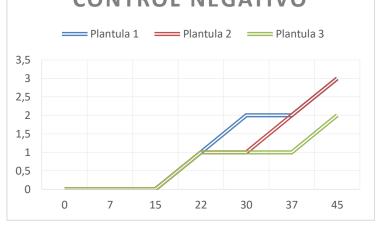


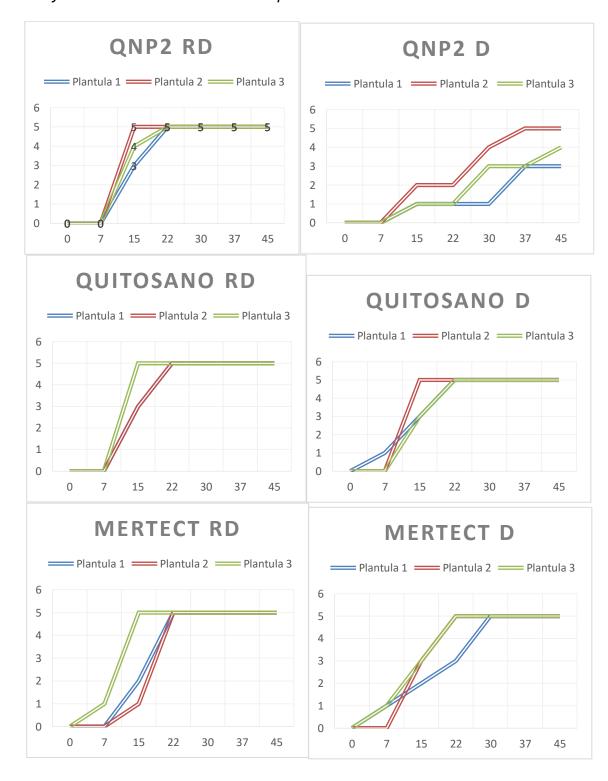

37 45



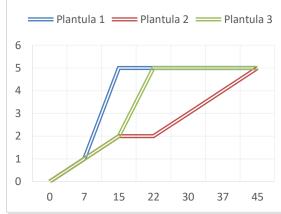



ACIDO ACETICO D

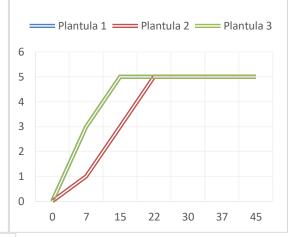

TRICHODERMA RD

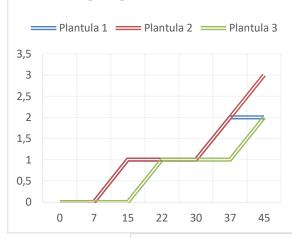


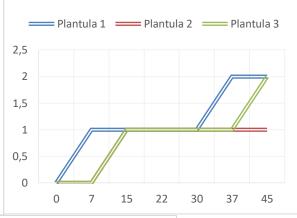
TRICHODERMA D

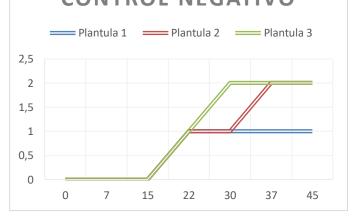


CONTROL NEGATIVO






ACIDO ACETICO D


TRICHODERMA RD

TRICHODERMA D

CONTROL NEGATIVO

Anexo 12. Ficha técnica de las plántulas usadas en el ensayo. Proporcionada por el Centro de Biosistemas de la Universidad Jorge Tadeo Lozano.

Calima F1

Tomate Chonto tipo Santa Clara

Estados de Desarrollo							
Días a germinación	Días a Transplante	Inicio a cosecha (DDT)					
4 a 8	22 a 30	75 a 85					

	Descripción del Fruto								
Forma	Longitud (cm)	Peso (g)	Postcosecha	Color en maduración	Clase de crecimiento				
Cuadrado	5 a 8	120 - 160	Buena	Rojo Intenso	Indeterminado				

Adaptabilidad							
Clima o Piso Térmico	Densidad de Siembra						
Cálido Medio Frío Medio	15.000 a 25.000						

Comportamiento Fitosanitario							
Abreviatura	Problema Fitosanitario	Agente Causal	Nivel de Tolerancia				
V (1,2) Fol (1, 2) N TMV	Marchitamiento por Verticillium Marchitamiento por Fusarium Nemátodos Virus del mosaico del tabaco	V. dahliae, V.albo-atrum Fusarium oxysporum M. incognita, arenaria, javanica TMV	Alta				

Características

Tomate híbrido indeterminado, tipo Santa Clara. Precoz, adaptado a climas medios y cálidos. Plantas muy vigorosas con hojas de color verde oscuro. Posee frutos grandes y firmes de color rojo brillante con peso entre 170-190 g. Se caracteriza por sostener el calibre hasta el final de la cosecha.

Presentación

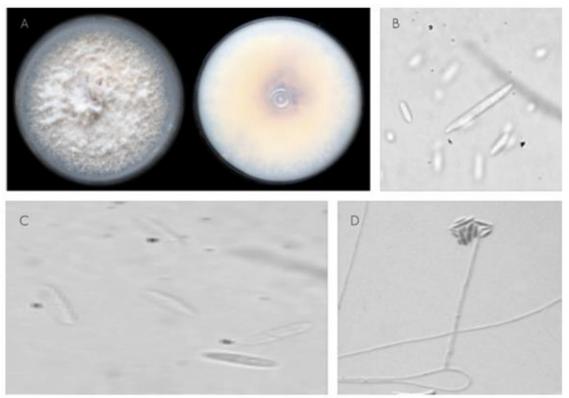
Sobre de 1.000 y 5.000 semillas

La información contenida en este folleto, fue obtenida después de la realización de ensayos de campo. Los resultados pueden variar de acuerdo con la región, el clima, el sistema de siembra, etc.

UNIVERSIDAD EL BOSQUE FACULTAD DE INGENIERÍA PROGRAMA DE BIOINGENIERIA

Protocolo de Evaluación para ChNPs+TPP+PEG frente a							
Fusarium solani en modelos In vitro e In vivo							
Fecha de creación	Elaborado por	Fecha de	N° de				
		Actualización	Paginas				
1-02-19	Pamela Avila	6-05-19	7				

1. Introducción


El control biológico es una de estas formas donde se utilizan organismos antagonistas, extractos naturales y compuestos producidos por estos organismos antagonistas que permiten el control de aquellos que causan enfermedades en los cultivos (Nicholls Estrada, 2008). Dentro de estos compuestos se encuentra el quitosano, el cual ha sido implementado en ciertos ensayos para su actividad antifúngica contra hongos del genero *Fusarium* spp. Se han realizado estudios de compuesto nanoparticulados que puedan utilizarse como controladores biológicos en este caso el presente protocolo evalúa la actividad antifúngica de las nanopartículas de quitosano+TPP+PEG frente al hongo *Fusarium solani*, microorganismo causante de la podredumbre de pie de tomate.

Fusarium solani es un hongo fitopatógeno de gran importancia que causa diferentes enfermedades en los cultivos como la podredumbre de la raíz, la pudrición de la raíz y el tallo, el síndrome de muerte súbita, podredumbre del pie en frijol y tomate (Figura 1), siendo esta ultima la evaluada en el presente protocolo .(Luginbuhl, 2010).

Figura 1.Sintomatología causada por Fusarium solani. (De izquierda a derecha) Necrosis de la raíz de planta de tomate. Síntomas causados por F. solani Clorosis, marchitez y ligera pérdida de turgencia (Doan et al., 2018).

Las colonias de *Fusarium solani* (Figura 2) crecen a 25°C en PDA donde se describe macroscópicamente con anverso blanco de textura algodonosa y ligeramente amarillento hacia el centro y el reverso blanco crema (Robles Yerena et al., 2016). Microscópicamente posee hifas hialinas con microconidios unicelulares hialinos, cilíndricos, curvadas y se forman sobre monofiálides laterales, largas. Posee macroconidias descritos como fragmoconidios con 5 a 6 septos hialinos, fusiformes, robustos(Robles Yerena et al., 2016)

Figura 2. Morfología de Fusarium solani. Macroscópica: A. Anverso y Reverso. Microscópica: B y C. Microconidias y Macroconidias D. Monofiálide alargada con conidios en arreglo de falsas cabezas mucilaginosas. (Robles Yerena et al., 2016)

Pudrición en la base del tallo o del pie de tomate

La enfermedad causada por la especie de *Fusarium solani* se caracteriza por que los síntomas se presentan como una lesión necrótica de color marrón en el tejido cortical que asciende desde la base hasta el ápice de la planta causando eventualmente la defoliación de la planta. Se evidencia una necrosis en la raíz causando la podredumbre de las raíces secundarias y destrucción de tallo(Luginbuhl, 2010; Robles Yerena et al., 2016).

2. Objetivos

Evaluar la actividad antifúngica *in vitro* e *in vivo* de nanopartículas de quitosano+TPP+PEG sobre *Fusarium solani* empleando tomate chonto como modelo vegetal (*Solanum lycopersicum*).

3. Materiales y reactivos

Materiales

- Cajas de Petri
- Tubos tapa rosca
- Asa redonda
- Aguja de disección
- Palillos de madera estériles
- Micropipeta de 10-100µL
- Micropipeta de 100-1000 μL
- Puntas azules y amarillas para micropipeta
- Cámara de Neubauer
- Microscopio Óptico
- Laminas
- Laminillas
- Rastrillos

Reactivos

- Agar PDA
- Agar microbiológico
- Solución salina al 0.85%
- Ácido acético al 0.15%v/v
- Quitosano
- Cepa de F. solani
- Cepa de Trichoderma sp.
- Azul de lactofenol.
- Agua desionizada estéril.
- Fungicida comercial.

4. Metodología

4.1. Caracterización macro y microscópica del hongo *F. solani*

La cepa utilizada de *Fusarium solani* debe ser reactivada con 7 días de antelación en medio PDA e incubada a 25°C. Se debe realizar el reconocimiento del hongo *F. solani* mediante el cultivo del mismo en el agar papa dextrosa (PDA) para evidenciar las características macroscópicas del hongo (Color de anverso y reverso, textura y aspecto).

Para la caracterización microscópica se realiza tinción con azul de lactofenol; esta consiste en colocar una gota de azul de lactofenol en una lámina de vidrio, con la aguja de disección se toma un poco de micelio de la periferia de la colonia y se extiende sobre la lámina con azul de lactofenol, luego se coloca una laminilla y se observó en el microscopio óptico a 40X.

4.2. Curva de crecimiento

Con el fin de determinar crecimiento y desarrollo del hongo se realiza una curva de crecimiento. Para esta se siembra el hongo por punción en el centro de la caja de Petri con PDA, luego se mide el crecimiento del micelio tomando 4 medidas del diámetro del micelio, como se muestra en la figura 2, cada 24 h y registrándose los datos hasta que el hongo llene por completo la caja de Petri. Para este procedimiento se deben realizar 5 réplicas.

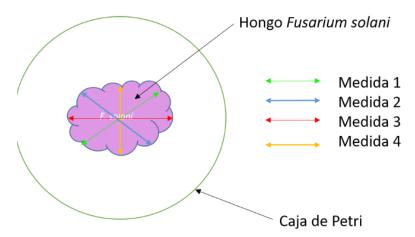


Figura 3. Esquema de toma de medidas del micelio

4.3. Evaluación de la actividad antifúngica ChNPs+TPP+PEG en cultivo *in vitro* sobre *F. solani*

La evaluación de estas nanopartículas se debe hacer con la presencia de otros tratamientos para la comparación estadística. Realizar 3 réplicas (mínimo) por tratamiento.

Tratamientos para cultivo in vitro:

- Tratamientos con ChNPs+TPP+PEG.
- o Tratamiento con quitosano comercial.
- Control del reactivo: Tratamiento con ácido acético al 0.15%
- Control negativo

Métodos de aplicación del tratamiento: Se implementa el método de dilución en agar según la metodología propuesta por Saharan, y otros, (2015). Para lo cual se añade 100μl (Pardo, 2017) de cada uno de los tratamientos respectivos para caja una de las cajas de Petri con medio PDA en fase liquida, se distribuye el tratamiento en toda la caja y se deja solificar en cabina de flujo laminar, posteriormente se sembró el hongo con discos de micelio agar y se incubó a 25°C durante 12 días.

Crecimiento micelial y esporulación

Para evidenciar la actividad antifúngica se den tomar los datos del crecimiento micelial en las cajas de Petri durante el periodo que dure la evaluación, es decir, hasta que el control

negativo llene la caja de Petri. Luego se calculó el PICR para estos tres días según la siguiente formula.

$$PICR = \frac{R1-R2}{R1} * 100\%$$
 (1) (Juniors et al., 2017)

R1 - crecimiento radial del no influenciado (Control negativo)

R2 - crecimiento radial influenciado (Tratamiento)

4.4. Escalamiento síntomas de podredumbre de pie de tomate chonto causado por *F. solani.*

Para la evaluación *in vivo* se debe realizar una escala de severidad en la planta de tomate chonto, donde se inocula la planta al sumergir la raíz en una suspensión de 1x10⁶conidios/ml durante 2 minutos, luego se trasplanta a suelo estéril y se evalúa hasta la muerte de las plántulas (Marlatt, Correll, Kaufmann y Cooper ,1996, y Herrera Cid, 2017)

- 4.5. Evaluación in vivo de las ChNPs+TPP+PEG
- o Inoculación de *F. solani* en plántulas de tomate chonto.

Se utiliza una suspensión de 1x10⁵ conidios/ml de *F. solani* y se aplica mediante Root Dipping (RD) (Figura 4) (El-mohamedy, Abdel-Kareem, Jaboun-Khiareddine, & Daami-Remadi, 2014) (López Benítez, Hernández Martínez, Álvarez Ojeda, Méndez Aguilar, & Mendoza, 2016): Las plantas se inoculan para cada técnica con la raíz con herida (H) y raíz sin herida (SH) de la siguiente forma:

- Root Dipping (RD) + raíz con herida (H): se retiran las plántulas del suelo removiendo con cuidado la tierra de las raíces y enjuagando con un suave chorro de agua para eliminar el exceso, luego se cortaron con tijeras dos centímetros de la punta de la raíz de cada planta y se sumergen por separado durante dos minutos en la suspensión de conidios, posteriormente las plántulas se trasplantan recipientes con suelo estéril (López Benítez, Hernández Martínez, Álvarez Ojeda, Méndez Aguilar, & Mendoza, 2016).
- Root Dipping (RD) + raíz sin herida (SH): se extrajeron igualmente las plántulas del suelo y se retiró este con cuidado igual que en el proceso anterior. Sin realizar el corte se sumergen las raíces por separado durante dos minutos en la suspensión de conidios y finalmente se trasplantan en las mismas condiciones que la técnica anterior (2016).

Figura 4. Técnica Root Dipping. (De Silva, 2016)

Se realizan 3 repeticiones por material y 3 días después de inocular se aplican los diferentes tratamientos mediante Root Dipping.

 Aplicación de las ChNPs+TPP+PEG a las plántulas infectadas previamente con F. solani.

Para la aplicación de las nanopartículas por Root Dipping se realiza de manera individual para cada planta inoculada con *F. solani*, para esto las plantas de tomate son extraídas del suelo, se les retira el exceso de tierra a las raíces, y se sumerge durante 30 minutos en una suspensión de ChNPs+TPP+PEG. Dicha suspensión es preparada en proporción 1:10, al añadir 10ml de nanopartículas a 100ml de agua desionizada y estéril.

Se realiza el montaje de 2 testigos, uno donde la planta este sana y uno donde la planta este inoculada con *F. solani*, pero sin aplicarse las nanopartículas. Para esta técnica se realiza por triplicado y se evalúa síntomas de la podredumbre de pie de tallo de tomate como la marchitez, clorosis y pérdida de turgencia cada 7 días durante un periodo de 45 días registrando, el daño en la planta según la escala de severidad establecida (Apartado 4.4)

4.6. Análisis estadístico para los resultados obtenidos

Todos los datos obtenidos, tanto de las pruebas *in vitro* (PICR) como *in vivo* (Severidad de los síntomas), se analizan estadísticamente mediante el test ANOVA One Way en el programa SPSS y luego se realizó un test Tukey para el ensayo *in vitro* y un test Duncan para el ensayo *in vivo* con p<0,5 para identificar el nivel de significancia de los tratamientos.

Para la evaluación *in vitro* se toman los datos de PICR calculado frente al control negativo y el PICR calculado frente al ácido acético como el crecimiento radial del no influenciado, en cada día de evaluación. Para la evaluación *in vivo* se usan los datos de severidad, a estos datos se les calcula el área bajo la curva y este resultado se procesa estadísticamente.

5. Recomendaciones

Evaluar todos los tratamientos el mismo día cada 24 h, para la evaluación *in vitro*. Cuando el control negativo llene la caja se toma como el día final de la evaluación, este dato no se usa para el análisis estadístico.

En caso de obtener resultados de PICR negativos cuando se calcula con el ácido acético como el crecimiento del no influenciado, realizar el análisis estadístico ANOVA con las el promedio de las medidas de diámetro registradas.

6. Conclusiones

Las ChNPs+TPP+PEG tienen un efecto antifúngico frente a *F. solani* mediante la aplicación de este protocolo tanto en el modelo *in vitro* como en el modelo *in vivo* en plántulas de tomate chonto (*Solanum lycopersicum*)

7. Bibliografía

- De Silva, U. (2016). *Have not got enough space in your own garden?* Recuperado el 22 de 07 de 2018, de Nerdynaut: https://www.nerdynaut.com/research/biology/have-not-got-enough-space-in-your-own-garden
- Doan, H., Miyao, G., & Davi, M. (2018). Fusarium Diseases of Tomato. Retrieved from http://ccvegcrops.ucanr.edu/files/255179.pdf
- El-mohamedy, R. S. R., & Abdel-kareem, F. (2014). Chitosan and Trichoderma harzianum as Fungicide Alternatives for Controlling Fusarium Crown and Root Rot of Tomato Chitosan and Trichoderma harzianum as Fungicide Alternatives for Controlling Fusarium Crown and Root Rot of Tomato, (January 2016).
- Herrera Cid, R. A. (2017). ESTUDIO ETIOLOGICO DE Fusarium oxysporum EN TOMATE EN LA ZONA CENTRAL DE CHILE
- Juniors, E., Torres, P., Cabrera, A. B., Virelles, P. M., Mora, L., Reyes, Y. S., & Santana, R. C. (2017). Actividad antagónica de Trichoderma harzianum Rifai sobre el agente causal del tizón del arroz (Pyricularia grisea Sacc.) Antagonistic activity Trichoderma harzianum Rifai on the causal agent of, 44(3), 13–19
- López Benítez, A., Hernández Martínez, R., Álvarez Ojeda, G., Méndez Aguilar, R., & Mendoza, O. (2016). Respuesta a la inoculación de *Fusarium oxysporum* f. sp. *lycopersici* (Fol) (Sacc.) Snyder y Hansen en tomate. *Memoria de la XXVIII Semana Internacional de Agronomía FAZ-UJED*, 786-792.
- Luginbuhl, S. (2010). Fusarium_solani. Retrieved from https://projects.ncsu.edu/cals/course/pp728/Fusarium_solani.htm
- Marlatt, M. L., Correll, J. C., Kaufmann, P., & Cooper, P. E. (1996). Two Genetically Distinct Populations of Fusarium oxysporum f. sp. lycopersici Race 3 in the United States. *Plant Disease*, 8(12), 1336-1342.

- Nicholls Estrada, C. I. (2008). *Control biológico de insectos: un enfoque agroecologico.* Medellin, Colombia: Editorial Universidad de Antioquia.
- Pardo, J. (2017). Protocolo preliminar para la sintesis de nanoparticulas de quitosano con matriz polimerica de tripolifosfato y polietilenglicol, con aplicacion antifungica (Tesis de pregrado). Bogotá: Universidad El Bosque.
- Robles Yerena, L., Leyva, S., & Cruz, A. (2016). Fusarium oxysporum Schltdl. y Fusarium solani (Mart.) Sacc. causantes de la marchitez de plántulas de Pinus spp. en vivero. *Revista Mexicana de Ciencias Forestales*, 7(36). Retrieved from
 - https://www.redalyc.org/jatsRepo/634/63449186003/index.html
- Rodríguez, N., Valderrama, A., Alarcón, H., & López, A. (2010). PREPARACIÓN DE PARTÍCULAS DE QUITOSANO RETICULADAS CON TRIPOLIFOSFATO Y MODIFICADAS CON POLIETILENGLICOL. Revista de la Sociedad Química del Perú, 76(4), 336-354.
- Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S., & Pal, A. (2013). Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. *International Journal of Biological Macromolecules*, 62, 677-683.
- Saharan, V., Sharma, G., Yadav, M., Kumari Choudhary, M., Sharma, S., Pal, A., . . . Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. *International Journal of Biological Macromolecules*, *75*, 346-353.