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A B S T R A C T   

Angiotensin-converting-enzyme inhibitors (ACEI) are a group of drugs primarily used in the treatment of car-
diovascular disease. In this study, MLR and PLS QSAR models were developed to evaluate the antihypertensive 
activity of new enalapril analogs, while binding affinities between each analog and ACE were determined with 
AutoDock. Consequently, analogs presenting para and meta trifluoromethyl substitutions, and a N,N-dialkyl 
aliphatic amide were the most promising analogs, exhibiting an IC50 of 0.009 nM and affinity energies of 
� 8.9 kcal/mol, surpassing those of enalapril. Furthermore, all promising analogs were predicted to be less toxic 
than enalapril according to the software PreADMET.   

1. Introduction 

Hypertension is a long-term condition, often regarded as a significant 
risk factor for cardiovascular disease. The control and prevention of this 
condition have been considered critical to world health [1]. Currently, 
there are several types of pharmaceutical drugs available for the treat-
ment of hypertension, such as renin inhibitors, angiotensin II receptor 
blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs). 

Angiotensin-converting enzyme (ACE) is a zinc-dependent dipepti-
dase that catalyses the conversion of angiotensin I to the vasopresor 
angiotensin II [2]. It possesses two catalytic domains, (N- and C- do-
mains), with the pentapeptide C-domain being responsible for the en-
zyme’s function [2]. ACE is produced by endothelial cells present in for 
example, the CNS, kidneys and lungs [3]. 

Angiotensin-converting enzyme inhibitors (ACEI) are a group of 
drugs used in the treatment of cardiac pathologies like hypertension, 
congestive heart failure, left ventricular dysfunction and myocardial 
infarction [4]. ACEI act as potent vasodilators by blocking the conver-
sion of angiotensin I to angiotensin II, thereby lowering blood pressure 
by generating prolonged hypotensive responses [5]. 

In general, ACEI have been widely tolerated. However, common 
adverse effects include cough [6], eczematous reactions [7], hypoten-
sion, hyperkalemia [4], and small bowel angioedema [8]. The incidence 
of almost all of these effects could be reduced by designing ACEI with 
greater affinity to ACE’s active site, lower IC50 values and lower toxicity. 

In recent years, virtual screening has become an integral part of the 
drug discovery process. There are two types of virtual screening tech-
niques: Structure-Based Virtual Screening (SBVS) and Ligand-Based 
Virtual Screening (LBVS). SBVS uses the 3D structure of a compound 
in order to predict its binding affinity to a receptor [9], whereas LBVS is 
used to predict pharmacological parameters such as the IC50 of a ligand, 
based on its structure-activity relationship using molecular desciptors, 
and not binding affinities. 

One way to evaluate the binding affinity between a drug candidate 
and its receptor is by molecular docking, where simulating the ligand- 
receptor docking process allows for the calculation of scoring func-
tions which in turn predict the binding affinity between drug candidate 
and receptor after they have been docked [9]. 

On the other hand, LBVS uses molecular descriptors of known active 
ligands, rather than the structure of the receptor, since it theorizes that 
ligands similar to active ligands will also show a similar binding activity 
to the receptor [9]. This type of virtual screening quantitatively relates 
structure to the biological activity of a family of compounds, known as 
QSAR which, based on the activity of several analogous ligands, allows 
the prediction of IC50 values for new compounds [10]. Currently, several 
QSAR models exist where the information available will be critical in 
selecting the best suited model for a study. For example, those based on 
MLR and PLS are used when there are few well-correlated input data, 
whereas when data is plentiful Machine Learning models (e.g ANNs, 
decision trees, SVMs) are chosen [9]. 
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Considering that ACE plays a critical role in controlling blood pres-
sure, inhibiting its function has been the target of hypertension control. 
San Juan & Cho [11], created a QSAR model showing the structural 
characteristics potential ACEI must have in order to inhibit the enzyme’s 
C-domain, and therefore hinder its function. First, ACEI require a ter-
minal carboxyl group to promote ionic interactions with the cationic 
site. Second, they must feature a hydrogen bond acceptor. Finally, they 
need an ionizable functional group capable of coordinating with the 
Zn2þ ion. Additionally, studies have stated that any additional ionizable 
groups or hydrophobic radicals increase the efficacy of the ACEI can-
didates [3]. Moreover, other QSAR models have, in turn, determined 
that the hydrophobicity and the polar interaction of ACEI play an 
important role in its inhibitory activity [12,13]. Also, recent studies 
using linear models have yielded promising results such as highlighting 
that positions C-1 and C-4 of possible ACEI oligopeptides are the most 
relevant at increasing their inhibitory activity [14]. 

The development of ACEI analogs through QSAR models by means of 
MLR and PLS regressions is one of modern medicine’s priorities due to 
the possibility of discovering ACEI analogs with more favorable clinical 
profiles than those currently in use [3]. However, the toxicological 
profile of new ACEI must be considered seeing as a drug candidate can 
prove to be more potent and target-specific, yet more harmful than those 
ACEI currently used. Recently, predictive models have been developed 
to assess drug safety since they are inexpensive, eco-friendly and can be 
performed before a compound is synthesized [15]. 

2. Materials and methods 

First, to carry out LBVS, molecular descriptors associated with ACEI 
activity and a suitable training set (commercial and non-commercial 
antihypertensives) were identified according to the literature. Those 
reference ACEI were built and optimized in Avogadro [16], through 
conformational analysis using the random rotor conformer search 
method and a MMFF94 force field. 

Then, the VCCLAB [17], program was used to calculate values for 
those molecular descriptors where those constitutional and topological 
descriptors with a linear relationship with the experimental IC50 (via 
ORIGIN 8.5) were selected to develop a QSAR model that could predict 
IC50 values. 

The correlation between the molecular descriptors and IC50 of the 
training set was explored using MLR and PLS QSAR models. Reference 
data to assess the quality of established models and their respective 
results were derived from the OCHEM database [18]. Both QSAR models 
yield equations that predict the IC50 of new ACEI analogs. Likewise, to 
carry out SBVS [9], binding affinities between molecules from the 
training set and ACE were determined by means of AutoDock Vina [19], 
with AutoDock4Zn force field [20]. 

Next, ACEI analogs were designed according to the structural re-
quirements stated in the literature where enalapril derivatives were 
mainly studied. After their design, the ACEI analogs were characterized 
first through a conformational analysis using Avogadro [16] and Conf-
Gen [21], second by the calculation of their molecular descriptors and 
IC50 with QSAR models, and third by the measurement of their binding 
affinities through AutoDock 4.2.6 [19]. The results were then compared 
with those of the training set where two analogs showed the most 
promise since they exhibited lower IC50 values and greater binding af-
finities to ACE. 

Afterwards, more than 200 structural modifications were made to 
the two promising ACEI analogs and data was again obtained from the 
MLR, PLS models and from AutoDock. However, this step of the process 
also includes the use of PyMOL [22]. Finally, the toxicity profile of the 
five most promising analogs was predicted using PreADMET [15]. 

3. Results and discussion 

The methodology sought to produce structural hybrids of a 

biologically active therapeutic with greater affinity and efficacy than the 
parent drug [23]. Ligand-based drug design includes QSAR modeling 
where regression, classification and machine learning models help 
determine the possible structure-activity relationships in order to pre-
dict the activity of new molecules due to physicochemical properties or 
theoretical molecular descriptors. This approach has become popular in 
past years since it seeks to reduce the cost and time related to drug 
discovery [24]. 

First, for the creation of the QSAR models used in this study, known 
antihypertensives like enalapril were modeled in Avogadro. Then, 
several molecular descriptors were evaluated with OCHEM [18] and 
VCCLAB [17]. A regression-based QSAR model relates the biological 
activity (dependent variable) to a set of molecular descriptors (inde-
pendent variable) resulting in a mathematical equation correlating these 
two variables. In this study, MLR and PLS models were used to relate 
molecular descriptors to antihypertensive activity (IC50). The molecular 
descriptors examined according to the literature were topological polar 
surface area, formal charge, octanol-water partition coefficient, iso-
electric point, ionization potential, molar refractivity, van der Waals 
surface area, electronic density, dipole moment and pKa. Among the 
examined molecular descriptors only those with a linear relationship 
with the experimental IC50 values were selected to describe the sample 
and develop a QSAR model that could predict IC50 values. Based on the 
results, only partition coefficient, molar refractivity and dipole moment 
were chosen. 

The MLR and PLS models must be examined in terms of the statistical 
quality of their results in order to assess their predictive capacity. A 
model with greater statistical quality, will yield more reliable and ac-
curate predictions [25]. The statistical quality of a model can be eval-
uated using the coefficient of determination (R2), Fisher’s method (F) 
and standard deviation (s). However, the number of independent vari-
ables included in the models must also be considered, as there must be 
one variable per five or six compounds from the training set [26]. Table 1 
shows molecular descriptor data and predicted IC50 for commercial and 
non-commercial ACEI used for the development of the MLR and PLS 
QSAR models via MATLAB. The commercial and non-commercial ACEI 

Table 1 
Molecular descriptor data, experimental and predicted IC50 of training and test 
sets.  

Compound Log P AMR DMo IC50 

(nM)Exp 
IC50 

(nM) 
MLR 

IC50 

(nM)PLS 

Enalapril � 0.09 85.0 12.9 1.2 [3] 1.5 1.6 
Imidapril � 0.04 92.3 6.20 1.7 [3] 2.0 2.1 
Lisinopril � 1.23 96.7 5.82 1.2 [3] 1.2 1.2 
Moexipril 0.89 122 5.05 2.6 [3] 2.9 3.3 
Perindopril � 0.08 76.6 8.79 1.5 [3] 1.2 1.2 
Quinapril 0.81 109 7.60 2.8 [3] 2.0 2.1 
Ramipril 0.54 95.3 3.40 2.0 [3] 1.9 2.0 
Spirapril 0.90 109 11.1 0.8 [3] 0.9 0.9 
Trandolapril 0.77 98.3 7.09 1.3 [3] 1.2 1.3 
Benazepril 0.62 102 1.70 1.7 [3] 2.6 2.7 
Cilazapril � 0.48 92.5 6.42 1.9 [3] 1.9 1.9 
Temocapril 0.89 115 2.69 3.6 [3] 3.3 3.6 
CHEMBL100413 0.91 117 3.86 1.7 [27] 2.4 2.5 
CHEMBL100826 1.14 120 9.58 2.3 [27] 3.0 3.3 
CHEMBL101409 0.74 114 5.74 11 [27] 9.0 11.1 
CHEMBL317304 0.64 103 8.58 6.7 [27] 6.1 7.4 
CHEMBL431052 � 0.38 86.6 12.4 3.5 [27] 2.1 2.3 
CHEMBL2111940 0.62 122 10.9 4.8 [27] 3.2 3.6 
CHEMBL2112767 � 0.78 89.8 16.3 17 [27] 12.1 15.9 
CHEMBL2112768 0.62 122 19.8 3 [27] 2.8 3.2 
CHEMBL2112769 0.61 119 12.9 7.7 [27] 4.6 5.5 
CHEMBL2371228 � 0.47 71.9 2.22 1.9 [27] 0.7 0.7 
CHEMBL2371229 � 0.38 80.3 18.0 230 

[27] 
152 198 

CHEMBL3037879 � 2.50 68.8 10.2 700 
[27] 

459 513 

Log P (P partition coefficient), AMR (Molar refractivity), DMo (Dipole moment). 
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are divided into two subsets of data: the training set (first 17 compounds, 
Table 1) and the test set (last 7 compounds, Table 1) which are used to 
estimate the precision of the model’s performance when applied to new 
ACEI analogs [10,25]. 

The equations yielded by the MLR and PLS models respectively are 
presented as follows: 

loglog
�

1
IC50

�

¼ 10:567ð�0:328Þþ 0:248ð�0:045ÞðlogPÞ2

þ 0:049ð�0:005ÞlogP � 0:021ð�0:003ÞAMR
þ 0:074ð� 0:008ÞDMO

(1)  

r¼ 0:984; F ¼ 1311:4; s ¼ 0:115   

R2 ¼ 0.968                                                                                           

loglog
�

1
IC50

�

¼ 10:77960þ 0:27168ðlogPÞ2þ 0:05350logP � 0:02308AMR

þ 0:00584DMO

(2)  

r¼ 0:978; F ¼ 511:9; s ¼ 0:741   

R2 ¼ 0.956                                                                                           

Based on the equations above, it can be observed that both models 
show high R2 and F values (R2 > 0.96) and low s-values, which indicate 
that they exhibit a high predictive capacity. However, between the two, 
the MLR model has the greatest statistical quality. Figs. 1 and 2 illustrate 
the relationship between experimental IC50 (from the literature) and 
predicted IC50 of both training and test sets (Table 1) derived from the 
MLR and PLS models. Both figures show an almost linear relationship 
among data indicating a suitable behavior for both subsets of data. In the 
interest of reducing variability, multiple rounds of cross-validation using 
different training and test sets partitions were rendered to estimate the 
predictive performance of the models. 

Once the QSAR models were developed, 19 enalapril analogs were 
designed (Fig. 3) according to the structural requirements mentioned 
before, which include a terminal carboxyl group, an oxygen as the 
electron acceptor, an ionizable functional group that adapts to the en-
zyme’s molecular geometry and an amide carbonyl group as hydrogen 

bond acceptor. During Phase I, 19 different molecules were created by 
modifying the R-group in enalapril (Fig. 3). These structural modifica-
tions were carried out considering that the structure of enalapril features 
two amino acids (ALA-PRO). The hypothesis in this study is based on 
modifying the alanine residue for another amino acid (Fig. 3). Therefore, 
the peptidic nature of the molecule would remain the same and only the 

Fig. 1. Relationship between experimental IC50 (from the literature) and pre-
dicted IC50 of several commercial and non-commercial ACEI derived from the 
MLR model. Training and test set data points are used to estimate the predictive 
capacity of the model. 

Fig. 2. Relationship between experimental IC50 (from the literature) and pre-
dicted IC50 of several commercial and non-commercial ACEI derived from the 
PLS model. Training and test set data points are used to estimate the predictive 
capacity of the model. 

Fig. 3. Structure template of the enalapril analogs designed during Phase I 
where the R-group was replaced with different amino acid residues. The R- 
group in enalapril is a methyl radical. 
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influence of the ALA-residue on the biological activity of the molecule 
would be evaluated. Table 2 summarizes the structure of the two 
promising ACEI analogs from Phase I with their respective IC50 values 
derived from both QSAR models. As shown in Table 2, analogs 6 and 14 
exhibit an IC50 equal to or lower than enalapril’s (IC50 ¼ 1.2) [3]. 

Moreover, molecular docking predicts the predominant binding 
modes of a ligand with a receptor protein [28]. This tool predicts the 
preferred orientation of one molecule to a second when bound together, 
and in turn predicts the binding affinity between those two molecules 
[29]. The receptor protein ACE was first downloaded from Protein Data 
Bank (PDB) [30] and was then optimized in AutoDock Vina [19]. The 
optimization algorithm is very efficient, with a success rate of 80%, 
because it takes into account several parameters of chemical interactions 
that allow for the evaluation of different scenarios, including the pro-
gram’s default one [31]. Afterwards, in order to determine the necessary 
parameters to carry out molecular docking (exhaustivity values, search 
area and number of cycles) the ACE-lisinopril complex was systemati-
cally evaluated. Ligand-binding sites were adjusted through multiple 
GRID arrangements and then estimated by means of the AutoDock Vina 
[20]. Later, the binding affinities (kcal/mol) between the enzyme and 
each ACEI analog were determined. Table 3 shows the binding affinities 
of the two most promising ACEI analogs from Phase I and two com-
mercial ACEI (enalapril and captopril), where analogs 6 and 14 require 
less binding energy than both commercial ACEI. 

Then, in order to have a greater notion of the affinity between the 
enzyme and the ACEI analogs from Phase I, their ligand-enzyme inter-
action distance was evaluated through PyMOL [22,30]. Thus, it was 
necessary to first evaluate the interaction between the enzyme and 
known antihypertensives like enalapril and captopril. Table 3 also shows 
the predicted ligand-Zn interaction (Å) of the two most promising ACEI 
analogs from Phase I and known antihypertensives (enalapril and 
captopril). Based on Table 3, it can be observed that all two analogs have 
similar interaction lengths to those of the known ACEI. However, it must 
be noted that the ligands experience other types of interactions with 
certain amino acid residues present in the enzyme such as Tyr523, 
Ala354, Hys353, Hys513, Lys511 and Tyr520 [3]. 

Afterwards, during in Phase II, structural modifications were made 
upon analogs 6 and 14 in an effort to improve their binding affinity and 
IC50. In total, 220 new molecules were designed all of which maintained 
the structural template of enalapril. With each new design, molecular 
descriptors, IC50, binding energies and ligand interaction lengths were 
calculated. Changes made to the two analogs took into account Lip-
inski’s Rule of Five which states that drug-likeness is exhibited when a 
molecule abides by the following criteria: molecular mass <500Da, 
LogP� 5, no more than five hydrogen bond donors and no more than ten 
hydrogen bond acceptors. 

First, the R1 group of analogs 6 and 14 (Fig. 4) was substituted with 
alkyl groups, successively substituting from a methyl to a decyl group, in 
order to decrease their polarity and evaluate hydrophobic analog- 
enzyme interactions. Next, R2 was consecutively substituted from a 

propyl to decyl group. Then, changes to both R groups were done at the 
same time; thus resulting in the evaluation of 80 systematic structural 
changes. It was observed that the IC50 decreased in both analogs as the 
size of the alkyl substituent increased. The alkylation of both functional 
groups was carried out considering that current toxicity classification 
states that compounds containing large quantities of hydrocarbons are 
less toxic (Class 1). Next, changes meant to increase the polarity of the 
analogs (Fig. 5) were also explored by the consecutive substitution of R2 
with hydroxyl, amine and halide groups, combining each substitution 
with the ones made to R1 in the previous step. The addition of hydroxyl 
groups resulted in the decrease of the IC50, whereas addition of aromatic 
substituents proved unpropitious. Then, the substitution of the phenyl 
group with alkyl groups was examined, where a decrease in binding 
affinity made the substitution unfavorable. However, para-alkylation of 
the phenyl group significantly decreased the ligand’s inhibition potency. 
On the other hand, halogenation of phenyl ring was carried out to 
evaluate if the inductive effect increased ligand-enzyme hydrogen 
bonding. Addition of methyl halides yielded the best results with an IC50 
of 0.009 and an increase in binding affinity (Figs. 6 and 7 and Table 4). 
Moreover, all new designs obtained a partition coefficient less than five, 
therefore indicating that they shouldn’t exhibit bioavailability prob-
lems. Fig. 7 shows the two new analogs with the most promising anti-
hypertensive activity from Phase II. 

Lastly, promising analogs from Phase I and Phase II underwent in 
silico drug safety assessments through PreADMET [15]. In this study, 
toxicity was evaluated by simulating growth inhibition, aquatic species 
reproduction, rodent carcinogenicity and bacterial mutagenicity assays 
[15]. Table 4 shows toxicity results for all four promising analogs and 
enalapril. Assessment of ecotoxicity demonstrated that analogs from 
Phase II (20 and 21, Fig. 7) are much less ecotoxic than enalapril, while 
analogs from Phase I (6, 14, Table 2) don’t exhibit a significant toxi-
cological difference to enalapril. Furthermore, the mutagenicity 
assessment (Ames_test) showed that only analog 6 proved to be muta-
genic. Finally, all four analogs and enalapril presented negative for 
carcinogenicity in mice, while only analogs 14 and 21 were found 
negative for carcinogenicity in rats. Based on these results, it can be 
inferred that the trifluoromethyl para-substitution on the aromatic ring 
of analog 21 would yield less toxic compounds. 

Likewise, results presented in Table 4 show that analogs 20 and 21 
display greater affinity with the enzyme, lower IC50 and more acceptable 
toxicity results compared to enalapril and captopril. Consequently, it 
can be concluded that both analogs exhibit promising antihypertensive 
activity according to the parameters evaluated in silico, and should 
therefore be synthesized and evaluated in vitro and in vivo in order to 
study their viability as future antihypertensive drugs. 

Table 2 
Structure of the two promising ACEI analogs from Phase I with their respective 
IC50 values derived from the MLR and PLS models.  

Structure Predicted IC50 with MLR 
(nM) 

Predicted IC50 with PLS 
(nM) 

6  1.3 1.3 

14  1.1 1.1  

Table 3 
Predicted ligand-Zn interaction (Å) of the two most promising ACEI analogs 
from Phase I and two commercial ACEI (enalapril and captopril). Binding en-
ergies between ligand and enzyme by means of molecular docking are also 
featured.  

Interaction Crystal structure 
(Å) 

Predicted interactions through PyMOL (Å) 

Captopril Enalapril 6 14 

1 8.485–8.673 8.3 8.5 8.0 8.0 
2 5.718–5.981 5.6 5.1 5.5 4.9 
3 3.532–3.628 3.5 3.6 3.5 3.6 
4 4.876–5.181 4.8 4.5 5.1 5.1 
5 3.989–4.047 4.0 4.2 4.3 3.9 
Molecular 

Docking 
Binding energy 
(kcal/mol) 

� 5.99 � 6.38 � 6.53 � 5.90 

Total 
intermolecular 
energy (kcal/mol) 

� 7.48 � 7.50 � 10.11 � 9.48  
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Fig. 4. First structural modifications made upon analogs 6 and 14.  

Fig. 5. Additional modifications made upon analogs 6 and 14, to evaluate the influence of substituting the aromatic ring.  

Fig. 6. Another set of modifications made upon analogs 6 and 14 to evaluate the influence of substituting the proline ring.  
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4. Conclusion 

MLR and PLS QSAR models were developed to predict antihyper-
tensive activity of enalapril analogs. Both models demonstrated statis-
tical quality by yielding r2-values greater than 0.97, relatively high F- 
values and low s-values. These models, along with molecular docking, 
were used to predict the binding affinity and antihypertensive activity of 
more than 200 new ACEI analogs. Those presenting para and meta tri-
fluoromethyl aromatic substitutions, and a N,N-dialkyl aliphatic amide 
turned out to be the best candidates. The most promising ACEI analogs 
were 20 and 21 since they presented an IC50 of 0.009 nM and binding 
affinities of � 8.90 and � 9.30 kcal/mol respectively, yielding better re-
sults than those of enalapril (IC50 1.2 nM and binding energy of � 7.50 
kcal/mol). As for the toxicity assessments, both analogs were less eco-
toxic than enalapril and both presented as non-mutagenic in an in silico 
drug safety study. However, only 21 proved non-carcinogenic on both 
rat and mouse cell lines, while 20 only presented non-carcinogenic on 
mouse cell lines. Therefore, it can be widely concluded that an in silico 
methodology may contribute to the design and discovery of new anti-
hypertensives with greater biological activity than those currently used. 
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