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Abstract: In this paper, we provide and study a discrete
model for the transmission of Babesiosis disease in bovine
and tickpopulations. Thismodel supposes adiscretization
of the continuous-time model developed by us previously.
The results, here obtained by discretemethods as opposed
to continuous ones, show that similar conclusions can be
obtained for the discrete model subject to the assumption
of some parametric constraints which were not necessary
in the continuous case. We prove that these parametric
constraints are not artificial and, in fact, they can be de-
duced from the biological significance of the model. Fi-
nally, somenumerical simulations are given to validate the
model and verify our theoretical study.
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1 Introduction
Bovine babesiosis is the most important arthropod-borne
disease of cattle worldwide. It provokes morbidity and
even mortality of cattle after a tick-borne, parasitic infec-
tion. Ticks infected due to the ingestion of parasites in the
blood of infected cattle are themost relevant transmission
agent of such a disease. The permanence of the infection
depends on the probability of the vertical transmission in
ticks population as suggested in [1] for dengue.

The most common varieties of babesiosis are Babesia
bovis and Babesia bigemina which can be found through-
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out the majority of tropical regions. In fact, as reported
in the literature [2] both varieties became endemic in the
south of USA and affected to the associated industry very
seriously.

Control strategies based on vaccination and antipar-
asitic treatments have been performed [3]. But, due to
residues and other problems, some vaccines and drugs
have been eliminated from these strategies [4, 5].

All these features make this disease interesting to be
modeled mathematically in order to know its dynamical
behavior. Actually, to know its behavior could lead to the
design of new control strategies.

In the literature, one can find few deterministic math-
ematical models of bovine Babesiosis. In [6], we intro-
duced a model based on ordinary differential equations
for bovine Babesiosis caused by Babesia bigemina and
Babesia bovis for the first time. After that, in view of this
previous one, a model of partial differential equations for
Babesia bovis was formulated by Friedman and Yakubu
[7]. Besides, based on our work in [6], Carvalho et al. [8]
presented a new version of our classical model chang-
ing the ordinary derivative by fractional Caputo derivate.
Likewise, in [9], authors study a fractional-order scheme
model on the disease. Our continuousmodel in [6] has also
served as a basis to set out and study similar models, in-
cluding other factors such as a two-stage in the cattle class
in [10] or the effect of seasonal changes in [11]. Moreover,
in [12] a study of the dynamic behavior of our model is per-
formed using a multistage modified sinc method which is
a computational algorithm for approximating solutions of
the classical system in a sequence of (time) intervals.

In the theory of epidemics, there are two fundamen-
tal types of mathematical models: continuous-time mod-
els described by differential equations and discrete-time
models described by difference equations. As said in [13],
discretization of continuous-time models is an interesting
and prominent trend. Following this idea, in the present
work, we deal with a discrete-time version of the classical
model for bovine Babesiosis proposed in [6]. In fact, dis-
cretization of classical continuous models could help to
check the skill in the selection of the factors to the design
of the model. Note that factors providing very different dy-
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namics could be not adequate to be considered in such a
design.

Discrete versions of models can be obtained by direct
formulation of the evolution with difference equations, as
we do in this work, or using discretization schemes of con-
tinuous models as for example the Euler scheme [14]. In
the last years, the study of discrete-time (epidemic) mod-
els has increased (see for instance ([15] or[16]) due to differ-
ent considerations (see [17]). First of all, statistical data on
epidemics are collected indiscrete time.Hence, to describe
epidemics using such discrete models seems to be conve-
nient. In addition,more accurate numerical simulation re-
sults are maybe obtained using discrete-time models, al-
though the dynamic behaviors of such discrete models are
often more complex [16]. Furthermore, numerical simula-
tions of continuous-timemodels are obtained by discretiz-
ing thesemodels. All these considerations justify the inter-
est and appropriateness of the present work.

In this work, the discrete system is set out by consid-
ering the same parameters as in the design of the continu-
ous case. After a simplification of the system, the model is
reduced to three difference equations. For such a discrete-
timemodel some necessary parametric constraints, which
are fundamental for the rest of the results in the paper,
are demonstrated. In fact, these parametric constraints are
not artificial and they can be deduced from the biological
significance of the model. This shows that additional care
should be taken when dealing with discrete-time systems.

After setting the constraints, we calculate the equilib-
ria of the system and the basic reproduction number R0.
This number should be regarded as the expected number
of new infections from one infected individual in a fully
susceptible populationduring its infectious period, and its
value provides a insight in the designing control interven-
tions for infectious diseases [18–20]. In fact, it is a key con-
cept in epidemiology as can be seen in [21–23]. Finally, we
demonstrate that the appearance of the endemic equilib-
rium depends on the value of the threshold parameter R0
and that such a parameter determines the local and global
stability of the disease-free and the endemic equilibria. Ac-
tually, it is shown that the systemundergoes a transcritical
bifurcation when passing through R0.

This study represents a first attempt to model the dy-
namics of bovine Babesiosis by a discrete model. Due to
that, it must be compared to the continuous model. Since
the obtained results on the dynamics are similar, we are
able to confirm the absence of contradictions between
both versions. Furthermore, it opens away to stimulate the
modelization by using other discretization schemes and
the comparison of the corresponding results in order to in-
form the debate on such new formulations.

Thedocument is organized as follows. In Section 2, the
discrete-timemathematicalmodel is established consider-
ing the same influencing parameters as in the continuous
case and some necessary conditions which will become
fundamental for the next sections are proved. Section 3 is
devoted to analyzing the existence and stability of equilib-
ria, once the threshold value R0 is provided. In particular,
conditions for local and global stability of the equilibria
that allow us to explain the dynamics of the disease are
demonstrated. As a consequence, a scheme of the bifurca-
tion of the system is also shown. In section 4, some numer-
ical simulations, which corroborate the previous theoreti-
cal study, are provided. Finally, in Section 5, we provide an
interpretation of the results in relation to the previously
published work and spell out the major conclusions and
open research directions on the significance of such con-
clusions.

2 Mathematical model
In this section, we establish a discrete-time model for the
dynamics of the evolution of the Babesiosis disease in
bovine and tick populations, considering the same influ-
encing parameters as in the continuous-time model pro-
posed in [6].

According to the notation in [6], we denote the bovine
population by NB(t) while the tick population is denoted
by NT(t). Bovines are split into three subpopulations,
namely, susceptible S̄B(t); infected ĪB(t); and controlled
C̄B(t), i.e., treated against Babesiosis. On the other hand,
ticks are naturally divided only into two subpopulations,
specifically, susceptible S̄T(t) and infected ĪT(t). The birth
and death rates are considered equal in each population,
being denoted by µB for the bovine population and µT for
the tick population.

For our purposes, susceptible bovines can become in-
fected due to an effective transmission caused by a bite of
an infected tick at a rate βB. Similarly, susceptible ticks can
become infected when biting an infected bovine at a rate
βT . To complete themodel, we denote by λB the fraction of
infected bovines which are controlled, while αB denotes
the fraction of controlled ones which return to the suscep-
tible ones. Finally, p represents the probability that a sus-
ceptible tick is born from an infected one. We assume an
homogeneous-mixing for disease dynamics, that is, all the
populations have same rates of disease-causing contacts.

To build our discrete-time epidemicmodel,we assume
that population in the (t+1)− th generation is a function of
the t − th generation with t ∈ N. Under this assumptions,
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we obtain a discrete model described by the following sys-
tem of difference equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S̄B(t + 1) = S̄B(t) + (µB + αB) C̄B(t) − βB S̄B(t)
ĪT(t)
NT(t)

,

ĪB(t + 1) = ĪB(t) + βB S̄B(t)
ĪT(t)
NT(t)

− λB ĪB(t),

C̄B(t + 1) = C̄B(t) + λB ĪB(t) − (µB + αB) C̄B(t),

S̄T(t + 1) = S̄T(t) + µTpĪT − βT S̄T(t)
ĪB(t)
NB(t)

,

ĪT(t + 1) = ĪT(t) + βT S̄T(t)
ĪB(t)
NB(t)

− µTpĪT(t),

(1)

We shall suppose that the bovine and tick populations
are constant. That is, NB(t + 1) = NB(t) and NT(t + 1) =
NT(t). Besides, we shall assume that all the parameters are
positive, since this is biologically logical.

For the system (1) above, we use the following propor-
tions

SB(t) =
S̄B(t)
NB(t)

, IB(t) =
ĪB(t)
NB(t)

, CB(t) =
C̄B(t)
NB(t)

,

ST(t) =
S̄T(t)
NT(t)

, IT(t) =
ĪT(t)
NT(t)

,

and the following equalities CB(t) = 1 − SB(t) − IB(t) and
ST(t) = 1 − IT(t) to obtain the next system of nonlinear
difference equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

SB(t + 1) = SB(t) + (µB + αB)
·
(︀
1 − SB(t) − IB(t)

)︀
− βB IT(t)SB(t),

IB(t + 1) = IB(t) + βBSB(t)IT(t) − λB IB(t),
IT(t + 1) = IT(t) + βT

(︀
1 − IT(t)

)︀
IB(t) − µTpIT(t).

(2)

Lemma 2.1. System (2) is epidemiologically meaningful if
and only if

1 − (µB + αB) ≥ 0.

Proof. Observe that, at any time t, the controlled bovine
population CB(t) cannot be less than zero, that is, CB(t) ≥
0. Then, when passing from time t to time t + 1, as formu-
lated in the third equation of (1), a fraction µBCB(t) of this
population dies a natural death while a fraction αBCB(t)
of the controlled bovine return to susceptible state. There-
fore, it is impossible that the sum of these two amounts
exceed the value of the initial stock, i.e.,

CB(t) − (µBCB(t) + αBCB(t)) = [1 − (µB + αB)]CB(t) ≥ 0,
∀CB(t) ≥ 0.

From the inequality above, we can deduce that

1 − (µB + αB) ≥ 0, ∀CB(t) > 0,

which is also valid for CB(t) = 0, since 1 − (µB + αB) does
not depend on CB(t).

Remark 2.2. Proceeding in a similar way as in the proof of
Lemma 2.1, from the rest of the equations of system (1), it
can be also deduced

1 − βB ≥ 0, 1 − λB ≥ 0, 1 − βT ≥ 0, 1 − µTp ≥ 0.

Nevertheless, it is not necessary to proceed in such a way.
Actually, since all the parameters involved in such in-
equalities represent rates, fractions of a normalized pop-
ulation or probability (see [6]) in order to have a epidemi-
ologically meaningful model, all of them are less than or
equal 1 and such inequalities hold automatically.

Proposition 2.3. The region

Ω =
{︁
(SB , IB , IT) ∈ R3

+ : 0 ≤ SB + IB ≤ 1, 0 ≤ IT ≤ 1
}︁

is a positive invariant set for system (2).

Proof. The previous conditions in Lemma 2.1 and Remark
2.2 can be used to prove that (2) is well posed. Effectively,
suppose that

(︀
SB(t), IB(t), IT(t)

)︀
is in the region Ω at any

initial time t.
First of all, looking at (1) from which these conditions

come, one can easily check that SB(t+1), IB(t+1), IT(t+1)
in system (2) are greater than or equal to zero and conse-
quently SB(t+1), IB(t+1), IT(t+1) are greater than or equal
to zero. Thus, in particular, we have

0 ≤ SB(t + 1) + IB(t + 1) and 0 ≤ IT(t + 1).

Additionally, we have

SB(t + 1) + IB(t + 1) = SB(t) + IB(t) + (µB + αB)
·
(︀
1 − SB(t) − IB(t)

)︀
− λB IB(t)

= [1 − (µB + αB)](SB(t)
+ IB(t)) + (µB + αB) − λB IB(t)
≤ 1 − (µB + αB) + (µB + αB) = 1.

Analogously, we have

IT(t + 1) = IT(t) + βT
(︀
1 − IT(t)

)︀
IB(t) − µTpIT(t)

≤ IT(t) + βT − βT IT(t)
= (1 − βT)IT(t) + βT
≤ 1 − βT + βT = 1.

Therefore, the region Ω is a positive invariant set for
system (2).

In such a context, we shall consider the region Ω as the
state space of system (2).
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3 Results on the existence and
stability of equilibria

This section is devoted to studying the existence and sta-
bility of the equilibria of model (2). In this sense, we shall
assume the following threshold parameter:

R0 =
βBβT
λBµTp

.

The value of this parameter means that each infected
bovine produces βT

µTp new infected ticks over its expected
infectious period, and each infected tick produces βB

λB new
infected bovines over its expected infectious period.

Contrary to the continues-time case, the (parametric)
positive constraints obtained in Lemma 2.1 and Remark 2.2
become fundamental for the proofs of the results in our
discrete-time case. Although such results are similar to the
continuous case, the proofs need to be performed by using
different techniques corresponding to discrete dynamical
systems.

Proposition 3.1. System (2) has a disease-free equilibrium
E*1 = (1, 0, 0) for all the values of the (positive) parameters,
while only if R0 > 1, there exists a unique endemic equilib-
rium E*2 = (S*B2 , I

*
B2 , I

*
T2 ) in the region Ω.

Proof. A fixed point E* = (S*B , I*B , I*T) of model (2) can be
obtained by solving the equations below⎧⎪⎪⎨⎪⎪⎩
(µB + αB)

(︀
1 − SB(t) − IB(t)

)︀
+
(︀
1 − βB IT(t)

)︀
SB(t) = SB(t),

βBSB(t)IT(t) + (1 − λB) IB(t) = IB(t),
βT

(︀
1 − IT(t)

)︀
IB(t) + (1 − µTp)IT(t) = IT(t).

(3)
This is equivalent to solve the following system⎧⎪⎪⎨⎪⎪⎩
(µB + αB)

(︀
1 − SB(t) − IB(t)

)︀
− βB IT(t)SB(t) = 0,

βBSB(t)IT(t) − λB IB(t) = 0,
βT

(︀
1 − IT(t)

)︀
IB(t) − µTpIT(t) = 0.

(4)

If IB(t) = 0 and IT(t) = 0, from the first equation
of system (4), one can easily check that SB(t) = 1 inde-
pendently of the values of the parameters. Therefore the
disease-free equilibrium E*1 = (1, 0, 0) exists for any value
of the parameters. This is epidemiologically meaningful
since, when there is no infected individual, all the bovine
population become susceptible.

Now, if we suppose that IB(t) > 0, IT(t) > 0 and con-
sider the second and third equations of (4), we get

SB(t) =
λB IB(t)
βB IT(t)

, IT(t) =
βT IB(t)

βT IB(t) + µTp
. (5)

Taking into account the above equalities, we can replace
SB(t) and IT(t) into the first equation of (4) to obtain the
following dependent function for the subpopulation of in-
fected bovines:

F(IB) = (µB + αB)
(︂
1 − 1

R0

)︂
(6)

− (µB + αB) λB
βB

(︂
1 + βBλB

+ βB
µB + αB

)︂
IB ,

where F(IB) is obviously continuous and strictly decreas-
ing in [0, 1].

If R0 ≤ 1, then

F(0) = (µB + αB)
(︂
1 − 1

R0

)︂
≤ 0

and since F is strictly decreasing in [0, 1], there is no 0 <
I*B < 1 such that F(I*B) = 0. Thus, the model (2) has only an
equilibrium: the disease-free one.

Now, if R0 > 1, then we have

F(0) = (µB + αB)
(︂
1 − 1

R0

)︂
> 0,

while

F(1) = (µB + αB)
(︂
1 − 1

R0

)︂
− (µB + αB) λB

βB

(︂
1 + βBλB

+ βB
µB + αB

)︂
< (µB + αB) − (µB + αB)

λB
βB

(︂
1 + βBλB

+ βB
µB + αB

)︂
= (µB + αB)

[︂
1 −

(︂
1 + λBβB

+ λB
µB + αB

)︂]︂
= (µB + αB)

[︂
−
(︂
λB
βB

+ λB
µB + αB

)︂]︂
< 0

and, since F is continuous and strictly decreasing in [0, 1],
there exists a unique 0 < I*B < 1 such that F(I*B) = 0.
Therefore, model (2) has a unique endemic equilibrium
E*2 =

(︀
S*B2 , I

*
B2 , I

*
T2
)︀
. In fact, one can check that

I*B2 =
(µB + αB) (βBβT − λBµTp)

βTαB (βB + λB) + µBβTλB + βTβB (λB + µB)
.

Substituting I*B2 in the second equation of (5), we ob-
tain

I*T2 =
(µB + αB) (βBβT − λBµTp)

βTβB (αB + µB) + βBµTp (αB + λB + µB)
.

and, replacing I*B2 and I
*
T2 in the first equation of (5),

we have

S*B2 =
βTλB (αB + µB) + λBµTp (αB + λB + µB)

βTαB (βB + λB) + βTλBµB + βTβB (λB + µB)
.
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(︀
S*B2 , I

*
B2 , I

*
T2
)︀
is in the interior ofΩ, as is demonstrated be-

low. To do such a demonstration, we must verify that

0 < S*B2 + I
*
B2 < 1 and 0 < I*T2 < 1.

First of all, observe that, since R0 > 1, we have
that λBµTp − βTβB > 0. Besides, all the parameters
involved in the expressions of S*B2 , I

*
B2 , I

*
T2 are greater

than zero. Hence, both conditions allow us to prove that
S*B2 , I

*
B2 , I

*
T2 > 0. In particular, we also have that S

*
B2 + I

*
B2 >

0.
Secondly, observe that

S*B2 + I
*
B2 =

βTλB (αB + µB) + λ2BµTp + βBβT (µB + αB)
βTαB (βB + λB) + µBβTλB + βTβB (λB + µB)

< 1,

if and only if

βTλB (αB + µB) + λ2BµTp + βBβT (µB + αB) < βTαB (βB + λB)
+ µBβTλB + βTβB (λB + µB) ,

Canceling all the common terms, the inequality above be-
comes

λ2BµTp < λBβTβB.

But, this last inequality is equivalent to λBµTp − βTβB < 0,
which holds since R0 > 1.

Finally, note that I*T2 < 1 if and only if

(µB + αB) (βBβT − λBµTp) <
βTβB (αB + µB) + βBµTp (αB + λB + µB)

Again, canceling some common terms, the inequality
above becomes the following equivalent one

(µB + αB) (−λBµTp) < βBµTp (αB + λB + µB) ,

which is true since its left hand side is less than zero, while
its right hand side is greater than zero.

Now, we are going to analyze the local stability of the
disease-free fixed point. In order to do that, we consider
the Jacobian matrix related to system (2) given by

J
(︁
S*B , I*B , I*T

)︁
(7)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 − (µB + αB) − βB I*T − (µB + αB) −βBS*B

βB I*T 1 − λB βBS*B

0 βT
(︀
1 − I*T

)︀
1 − µTp − βT I*B

⎞⎟⎟⎟⎟⎟⎟⎟⎠
As in the continuous case, the demonstration takes

into account the eigenvalues of this Jacobian matrix eval-
uated at the equilibria. Nevertheless, themethodwe apply

here is different from the one employed for the continuous-
time case in [6]. In this case, if all the eigenvalues of J(E*)
have magnitude less than one, then the equilibrium E*

is locally asymptotically stable, i.e., all solutions of sys-
tem (2) sufficiently close to the equilibriumpoint approach
it. Actually, we will prove that the conditions of the Jury-
Criterion (see [14] or [24]) are satisfied by the equilibria.

Theorem 3.2. The disease-free equilibrium E*1 of (2) is lo-
cally asymptotically stable ifR0 < 1 and unstable ifR0 > 1.

Proof. The characteristic polynomial at the disease-free
equilibrium E*1 = (1, 0, 0) is

p(𝛾) = (1 − µB − αB − 𝛾)
(︀
𝛾2 + a1𝛾 + a2

)︀
,

where a1 = µTp+λB−2and a2 = 1+µTpλB−βTβB−µTp−λB.
The first root of the polynomial is 𝛾1 = 1 − (µB + αB).

By Lemma (2.1), we have that |1− (µB + αB)| = 1− (µB + αB)
and since µB , αB are greater than zero,

|𝛾1| = |1 − (µB + αB)| = 1 − (µB + αB) < 1.

Now, to analyze if the other two roots satisfy |𝛾2,3| < 1,
we need to check the Jury conditions.

The characteristic polynomial of the Jacobian matrix
J(E*1) can be rewritten as

p(𝛾) = (1 − µB − αB − 𝛾)
(︁
𝛾2 − tr(Ĵ)𝛾 + det(Ĵ)

)︁
,

where Ĵ is the submatrix 2 × 2 of J
(︀
E*1

)︀
given by,

Ĵ (1, 0, 0) =

⎛⎜⎜⎜⎝
1 − λB βB

βT 1 − µTp

⎞⎟⎟⎟⎠ . (8)

In this context, Tr(Ĵ) = (1 − λB) + (1 − µTp) and det(Ĵ) =
(1 − λB)(1 − µTp) − βTβB. The (simplified) Jury criterion
(see [24]) states that the eigenvalues of Ĵ have magnitude
less than one if and only if

⃒⃒⃒
Tr(Ĵ)

⃒⃒⃒
< det(Ĵ) + 1 < 2.

Note that, the inequality det(Ĵ) + 1 < 2 is equivalent to
det(Ĵ) < 1. This is the onewe are going to prove next. Since
1 − λB ≤ 1 and 1 − µTp ≤ 1, we also have that (1 − λB)(1 −
µTp) ≤ 1 and, taking into account that βT , βB > 0, we have
that

det(Ĵ) = (1 − λB)(1 − µTp) − βTβB < 1

is always satisfied.
On the other hand, observe that in this case Tr(Ĵ) ≥ 0,

since 1 − λB ≥ 0 and 1 − µTp ≥ 0. Hence,
⃒⃒⃒
Tr(Ĵ)

⃒⃒⃒
= Tr(Ĵ) and

we must demonstrate that

(1 − λB) + (1 − µTp) < 1 + (1 − λB)(1 − µTp) − βTβB
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which is equivalent to

2 − λB − µTp < 2 − λB − µTp + λBµTp − βTβB .

After removing all the common terms in both sides , the
inequality Tr(Ĵ) < 1 + det(Ĵ) becomes

0 < µTpλB − βTβB

which is true if and only if R0 < 1.

In the next theorem, we prove the global stability of the
disease-free equilibrium when R0 ≤ 1, using the LaSalle
InvariancePrinciple for discrete-time systemsgiven in [25].

Theorem 3.3. The disease-free equilibrium E*1 of system
(2) is globally asymptotically stable if R0 ≤ 1.

Proof. First of all, we relocate our disease-free equilibrium
to the origin of coordinates. That is, we perform the change
of coordinates

XB(t) = 1 − SB(t)

in the system (2) and it becomes⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
XB(t + 1) =

[︀
1 − (µB + αB) − βB IT(t)

]︀
XB(t)

+(µB + αB)IB(t) + βB IT(t),
IB(t + 1) = βB

(︀
1 − XB(t)

)︀
IT(t) + (1 − λB) IB(t),

IT(t + 1) = βT
(︀
1 − IT(t)

)︀
IB(t) + (1 − µTp)IT(t).

(9)

We consider the following Lyapunov function V : Ω → R+
defined by

V
(︀
XB(t), IB(t), IT(t)

)︀
= βT IB(t) + λB IT(t),

where V ∈ C (Ω,R+), such that V(0, 0, 0) = 0 and
V
(︀
XB(t), IB(t), IT(t)

)︀
≥ 0 in Ω − (0, 0, 0).

Then, the difference

∆V (XB , IB , IT) = V
(︀
XB(t + 1), IB(t + 1), IT(t + 1)

)︀
− V

(︀
XB(t), IB(t), IT(t)

)︀
is given by

βT
[︀
βB

(︀
1 − XB(t)

)︀
IT(t) + (1 − λB) IB(t)

]︀
+ λB

[︀
βT

(︀
1 − IT(t)

)︀
IB(t) + (1 − µTp) IT(t)

]︀
− βT IB(t) − λB IT(t).

Simplifying and grouping terms, we have

∆V
(︀
XB(t), IB(t), IT(t)

)︀
= (10)[︀

(βTβB − λBµTp) − βTβBXB(t) − λBβT IB(t)
]︀
IT(t).

At this point, we shall prove that, if R0 ≤ 1, this last
expression is non-positive for every

(︀
XB(t), IB(t), IT(t)

)︀
in

Ω.
As by hypotheses R0 ≤ 1, equivalently, we have that

(βTβB − λBµTp) ≤ 0.

Additionally, as all the parameters are greater than zero
and XB(t), IB(t), IT(t) are non-negative in Ω, we can de-
duce that

∆V
(︀
XB(t), IB(t), IT(t)

)︀
≤ 0, for R0 ≤ 1.

Now, we need to obtain the maximal positively invari-
ant set G* contained in the subset G ⊂ Ω given by

G = {(XB , IB , IT) ∈ Ω : ∆V (XB , IB , IT) = 0}.

We shall distinguish two cases, depending on the val-
ues of the threshold parameter R0:

• R0 < 1: In this case, expression (10) equals zero if and
only if IT(t) = 0. The system (9) in suchpoints becomes

⎧⎪⎪⎨⎪⎪⎩
XB(t + 1) =

[︀
1 − (µB + αB)

]︀
XB(t) + (µB + αB)IB(t),

IB(t + 1) = (1 − λB)IB(t),
IT(t + 1) = βT IB(t).

(11)
Observe that, for every initial state of the form(︀
XB(t), IB(t), 0

)︀
, with IB(t) > 0, the following state in

its orbit verifies that IT(t + 1) = βT IB(t) > 0. Thus,
no orbit of a point of the form

(︀
XB(t), IB(t), 0

)︀
, with

IB(t) > 0 is contained in such a set of points G ⊂
Ω for which ∆V (XB , IB , IT) = 0. Nevertheless, if we
avoid this problem considering only the points of G
for which IB(t) = 0, one can easily check that, for any
point in such a subset, the iteration of the system (9)
reduces to⎧⎪⎪⎨⎪⎪⎩

XB(t + 1) =
[︀
1 − (µB + αB)

]︀
XB(t),

IB(t + 1) = 0,
IT(t + 1) = 0.

(12)

That is, the orbit of any initial state in the subset of G
given by IB(t) = 0, IT(t) = 0 remains in such a subset,
i.e., the largest positively invariant set contained in G
is

G* = {(XB , IB , IT) ∈ Ω : IB = IT = 0}.

Moreover, note that, since 0 ≤
[︀
1 − (µB + αB)

]︀
< 1,

the (disease-free) equilibrium (0, 0, 0) is G*−globally
asymptotically stable. At this point, since all the orbits
of the system remain in Ω, all of them are bounded.
Therefore, applying the LaSalle Invariance Principle
for discrete dynamical systems given in Theorem 3.3
of [25], we can conclude that the disease-free equilib-
rium is globally asymptotically stable in Ω.
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• R0 = 1: In this case, expression (10) equals zero if and
only if IT(t) = 0 or XB(t) = IB(t) = 0. Therefore, the set
G ⊂ Ω for which ∆V (XB , IB , IT) = 0 is the following:

G = {(XB , IB , IT) ∈ Ω : IT = 0} ∪ {(XB , IB , IT)
∈ Ω : XB IB = 0}.

Observe that for any initial point of the form
(0, 0, IT(t)) with IT(t) > 0, the system (9) becomes⎧⎪⎪⎨⎪⎪⎩

XB(t + 1) = βB IT(t),
IB(t + 1) = βB IT(t),
IT(t + 1) = (1 − µTp)IT(t).

(13)

This proves that no orbit of an initial state in the sub-
set {(XB , IB , IT) ∈ Ω : XB = IB = 0} with IT(t) > 0
remains in such a subset of G. In fact, only the orbit
originated by (0, 0, 0) remains in this subset.
At this point, proceeding as in the previous case, the
largest positively invariant set contained in G is

G* = {(XB , IB , IT) ∈ Ω : IB = IT = 0}.

Moreover, note that, since 0 ≤
[︀
1 − (µB + αB)

]︀
< 1,

the (disease-free) equilibrium (0, 0, 0) is G*−globally
asymptotically stable, and, since all the orbits of the
system remain in Ω, all of them are bounded.
Therefore, applying the LaSalle Invariance Principle
for discrete dynamical systems again, we can con-
clude that the disease-free equilibrium is globally
asymptotically stable in Ω, also in this case.

This last result is epidemiologically significant, because it
indicates that if a small number of infective individuals is
introduced in a susceptible population, then the disease
vanishes.

For R0 > 1, the endemic equilibrium E*2 is locally
asymptotically stable, as shownbynumerical simulations.
Actually, it can be seen that E*2 is globally asymptoti-
cally stable in Ω −

{︀
(1, 0, 0)

}︀
. That is, every initial con-

dition
(︀
SB(0), IB(0), IT(0)

)︀
∈ Ω produces a trajectory(︀

SB(t), IB(t), IT(t)
)︀
∈ Ω which converges to the unique in-

terior fixed point E*2. However, E*2 is not globally asymptot-
ically stable in Ω, because the disease-free point is also in
Ω.

Besides, when R0 < 1, the system has also the two
equilibria, E*1 asymptotically stable in Ω and E*2 unstable,
being E*2 in the outside of Ω.

Moreover, when R0 = 1, E*1 is the unique point of the
systembeing anon-hyperbolic fixedpointwhich is asymp-
totically stable in Ω.

Such issues allow us to infer the following corollary.

Corollary 3.4. System (2) undergoes a transcritical bifur-
cation at the parameter value R0 = 1.

4 Experimental procedures
In [6], we show through numerical simulations that when
R0 > 1, the endemic equilibrium E*2 is locally asymptot-
ically stable. However, as the disease-free equilibrium E*1
is in Ω, the endemic point is not globally asymptotically
stable in this region. But, it can be observed (numerically)
that it is in the region Ω−

{︀
E*1

}︀
. As in the continuous case,

our numerical simulations in this work proved that it is
still verified.

We consider the same parameter values as in the
continuous-time model and the parameter constraints
given by Lemma (2.1), with initial conditions SB = 0.3756,
IB = 0.5184, IT = 0, 6000. In Figure 1 panel (a), we
show that all the trajectories of SB (blue curve), IB (green
curve) and IT (red curve) converges to the disease-free
equilibrium point (1, 0, 0), if the reproduction number
R0 < 1, as was demonstrated in Theorem 3.2. In this case,
all the eigenvalues of its Jacobian matrix are less than 1,
(0.9987, 0.9735, 0.9992). Note that, if R0 ≤ 1, E*1 is still
globally asymptotically stable, as shown in Figure 1, panel
(b) in the state space.

Figure 1: Parameter values: µB = 0.0002999, µT = 0.001609,
αB = 0.001, βT = 0.00048. (a) for R0 = 0.0068 with βB = 0.003,
λB = 0.0265 and p = 0.5. (b) for R0 < 1 with βB = 0.006, p = 0.1
and λB = 0.000265
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Figure 2: The red point is an initial value condition for R0 < 1 and R0 = 1, panel (a) and (b) respectively

Figure 3: For panel (a) which initial condition SB = 0.3756, IB = 0.5184, IT = 0, 6000 and panel (b), (c) and (d) which SB = 0.9, IB = 0.15,
IT = 0, 1

Table 1: µB = 0.0002999, µT = 0.001609, αB = 0.001, p = 0.1 and λB = 0.000265

Parameter R0 Eigenvalues E* =
(︀
S*B , I*B .I*T

)︀
βB = 0.006, βT = 0.00048 67, 5446 (0.9959, 0.9983, 0.995) (0.0501, 0.7894, 0.7019)
βB = 0.006, βT = 0.00048 67, 5446 (0.9959, 0.9983, 0.995) (0.0501, 0.7894, 0.7019)
βB = 0.003, βT = 0.004 281, 4358 (0.9980, 0.9977, 0.9967) (0.0728, 0.7711, 0.9504)
βB = 0.006, βB = 0.004 562, 8716 (0.9959, 0.9983, 0.9967) (0.0374, 0.7998, 0.9521)

In Figure 2, we can check that {(0, 0, 0)} is the
largest positively invariant set contained in Ω, therefore of
disease-free equilibrium point is globally asymptotically
stable as shown in Theorem 3.3.

The following scenarios show that R0 > 1 (see Ta-
ble 1) when having high transmission of the disease in
the bovine population, high vertical transmissibility in the

ticks population and low control of infected cattle. In this
context, we show that every trajectory converges to the en-
demic equilibrium E*2 =

(︀
S*B2 , I

*
B2 .I

*
T2
)︀
except, of course,

the one starting at (0, 0, 0)
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5 Discussion
In the present work, we provide and study a discrete
model for the transmission of Babesiosis disease in bovine
and tick populations. It supposes a discretization of the
continuous-time model developed by us previously which
has served as a base for other works on this disease.

The results, here obtained by discrete methods as op-
posed to continuous ones, show that similar conclusions
can be obtained for the discrete model subject to the as-
sumption of some parametric constraints which were not
necessary in the continuous case. We prove that these
parametric constraints are not artificial and, in fact, they
can be deduced from the biological significance of the
model.

This study represents a first attempt to model the dy-
namics of bovine Babesiosis by a discrete model. Due to
this novelty in the modelization, it must be compared to
the continuous model. Since the obtained results on the
dynamics are similar, we are able to confirm the absence
of contradictions between both versions and the skill in
the selection of the factors to design the model.

Furthermore, it opens a new research line by using
other discretization schemes and the comparison of the
corresponding results in order to debate on such new for-
mulations.
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