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Abstract

In this paper we consider cardiac electrical activity through bido-
main model, to describe the electrical behavior of cardiac tissue, based
on current flow, electric potential distribution and conservation of charge.
So we use the finite volume scheme built on rectangular meshes. Dis-
cretizing will focus on existing algorithms for elliptic and parabolic equa-
tions, with convergence guaranteed by the classical theory.
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1 Introduction

Electrical behavior of cardiac tissue can be represented using bidomain model.
The tissue is assumed to be composed by two domains, intracellular and extra-
cellular, intertwined and superposed, considered continuous and occupying the
entire heart volume, the two are separated by the cardiac cell membrane acting
as isolator, the model is based on an approach of average volume equivalent to
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a model of multidimensional cable, describing the average electric potentials
and flows of intracellular and extracellular current of cardiac muscle [2, 8, 9].
The model consists of a system of partial differential equations of parabolic-
elliptic type with Neumann boundary conditions for the resolution of which,
we require computationally effective techniques and for this we apply a finite
volume scheme. One feature making the method attractive when modeling
problems for which flow is important is that of local conservation allowing
flow to spray from one cell to another.

The heart is composed or made up on too large a number of cells and so
it is not possible to model each cell separately and have full control of poten-
tial variations [3, 8, 10, 11]. The bidomain model is based on an approach of
average volume, describing the electrical behavior of tissue charge and current
conservation [2, 3, 8, 11]. The heart tissue is composed of two domains intra
and extra cell domain intertwine and superposed, assumed to be continuos
and occupying the entire heart volume, the two are separated by cardiac cell
membrane acting as isolator. Spatial domain of our model is a bounded subset
Q C R?, with smooth boundary 9. Potentials are denoted by u; = u;(x,t)
and u, = u(z,t), respectively, v = v(x,t) := u; — u, is known as transmem-
brane potential, the conductivity of the intracellular and extracellular tissue
is represented by M; and M., [3, 5, 10, 12]. Using Maxwell equations, the
relationship of electric and magnetic fields is given by V x E + %—lf = 0, where
E and B are the electric and magnetic fields, respectively. Current J is then
given by J = M E and J = —MVu, where M is conductivity, so J; = —M;Vu;,
J. = —M;Vu,. Let us assume that the only path of current flow is through
the cell membrane i,y (z,t) = i4p, is a stimuli current applied to extracellular
space. Now intracellular current through the membrane per unit volume can
be expressed as V - J; = —1,,,, V- Jo = I, — igpp and I, = 8 [C’m% + ]ion]
where [, is the transmembrane current per unit volume composed of capacity
and ionic current (see, for example, [1, 2, 5, 8, 10]). Also, V - M;Vu; = I,
V- MNue —igpy = =1, and =V - M;Vu; =V - M Vue + ig,,. Moreover, by
the law of current conservation V - (M;Vu;) = =V - (M.Vu,) and using these
relations, we obtain

6Om% - V- (szul) + Bjion =0
0
/cha_: + V. (Mevue) + 5Iion = Z.app-

Now considering Fitzhugh- Nagumo model [4, 7] given by
Hw,w)=av—bw and I[jp(v,w)=—-ANw—v(l—-2v)(v—20))

where a, b, A\ and 6 are given system parameters. Bidomain model is now given
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by the following reaction-diffusion system [1, 3, 12]

0
ﬁcma—’t) — V- (M;V) + Blign = 0
0
cha_: + V. (Mevue) + B]ion = Z.app (1)
ov
& H(v,w) = 0.
at (U,W) 0

Since we are considering cardiac tissue isolated, we will use the condition of
null boundary flow, that is to say,

(M;(z)V(uj)) -n=0 on I':=00x(0,T), j€{e,i}. (2)
Rewriting (1) in terms of v and u., we have that
V- (M; 4+ M )Vue +V - M;Nv =gy, (3)

Therefore, the model in terms of v and wu, is strongly coupled parabolic-elliptic
system and

ﬁcm% +V. (Mevue) + 6Iion = Z'app

V- (M + M)V + V- MV = gy, (4)
ov
% H(v,w) = 0.
5 (v,w) =0

We impose initial conditions v(0, z) = vo(z), w(0,z) = wy, x € Q.

To find solution we require that v in the bidomain model that initial value
vy be compatible with (2), so that, if u; and u, are fixed values [3], the problem
may have no solution, which leads us to impose compatibility condition

/ ue(z,t)dr =0 for almost everywhere, t € (0,7).
Q

2 Applying the finite volume scheme to bido-
main Model

Let a mesh be determined by a family of control volume 7, composed of open
rectangles of maximum diameter h, also for all k € 7, x), denotes its center, £(k)
the set of all k—borders, ¢;,; corresponds to borders inside €2 and &.,; the set of
k—borders on 99, then e(k) = (k) Ueerr(k)  emi(k) Neew (k) =0 VE € 7.
Given a finite volume k (see e.g. [1, 6]), N(k) is the set of k—neighborhoods
with common border in k, d(k,l) denoted distance from zy and z;, o = k|l is
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the segment from k to [ and ny, is the normal unit vector to o = k|l oriented
from k to [ for all k& € 7; |k| is the measure of cell k.

We have that 0 = UkETE, for kNl =0. If k,l € 7 and k # [, segments
Tz, and o = k|l are orthogonal the mesh also satisfied condition for some

a > 0, mm{dglrf(]g)} > «a para kerT, € N(k). To discretize bidomain
equations we choose €2, consisting of mesh 2 and time step At > 0, and we
set "1 = " + At. Now we consider bidomain model (4), integrating each

equation over each cell k and time interval (t",¢" + At) gives

g

tn+1 tn+1

/ da:dt + / z)Vu, - ng dadt
! tn+1 tn+1
+ B / / ion(V, w)dxdt = /

/ z)Vue + M (x)Vu,) - nydxdt
0

tn+1 tn+1

/ z)Vv - ng drdt = / /Iappda:dt
n tn K
gl
/ /—d:v—/ /H(v,w)dx
k

where the condition of no-flow on borders is taken independently, there are
two important properties to point out, divergence theorems and omitting time
integration, we assume that diffusive terms are constant in time over each cell.

Now, to discretize each one of terms over each cell £k € 7, we define con-
ductivity tensors as

/ Loppdadt
tn+1

.

tn+1

1 . .
My, = T /ij(x)dx j€{e i} (5)

Using (5), we can choose an approximation to diffusive flow bearing in mind
this flow is null on external borders o

oo fo_(Mj (x)Vuy) - ngdr  if o € gy
e O lf o & Eint-
Hence

/(Mj(ﬂﬁ)vuj) e & 03| Vg (yo) - Mjxnig

If 0 € gy define Mjp o = [ M, j €{e,i}. So

Yo — Tk
d(k,o)"

o1 Vui(Yo) - Mjxngg = |ogg| Mo Vu(ys) -
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This last equality does not hold in general, only when M; ;. ing o = | M im0k 0|70k 05
which actually is the case if ny, is an eigenvector for M,;. Also recall
di oNke = Yo — Z. S0 finally the approximation will be given by

Yo — Tk Ujo — Ujk
M; o’V o)’ UV o e
01| M .o Vu(yo) d(k, o) ~ ok | Mo Vu(yo) - d(k, o)
Now, if z), ¢ o the natural expression for F, o would be
u.a_ N u.,
Fjig = |owa| M —20—25 (6)

Ak, o)

Since the scheme is conservative, we obtain an approximation for u;,. In
fact, _Fj,k,l = F}',l,k and

Ujo — Ui —|oga| Mjra(ujo — uji)
|Uk l| gkl =
d(k,akyl) d(l,crk.,l)
then
. — Minapd(l, on) + d(k, 0w) Myt
7,0

M pd(l, o10) + My d(k, o%.1)
dividing both up and down by d(I, o)d(k, o),

Mj kv k + M kw0
_ d(k?,O') d(l,a (7)
5o T My, Mj 6,0

d(ljcfyg T =it

where u;, is the approximation for u;(y,),j € {e,i}. If z; € 7, replacing (7)
on (6) and taking u, = uy, we obtain the value Fj; con o € g

‘O'k,le,k,l |M',z,k(uj,l - uj,k)

(Mj,lald(l, 0') + Mj,hkd(l{, U)) '

Firi =

So the flow on internal borders is Fjg; = d . |owa| (w0 — ujp) with dj, =
M ki Mk
Mj’kyld(l,o’)+ijl’kd(k,0‘)
borders dj . j|or.1| (w1 — ujx) = 0 for o € sext(k) j = {i,e}. Discretizing terms

border condition comes in, imposing a no-flow condition in

H(v,w) and [;p,(v,w) we have H,’;“ = MN ;L"H fk (v, w)dxdt, IZ;;; -
th [, Lion (v, w)dadt, 17, = 1 t"“ [, Lapp (2, t")dadt, where for sim-

o I
plicity we divided by At.
Now the calculi begin with initiation variables

1 1
vy = —/vo(x)da: and w) = —/wo(x)d:c
k] Jk k] J

T PPk ‘k!At
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and using Euler scheme we have

tntl ot e tntl n+1
/ /a (z,t)dxdt = ymTk and / /a (2, t)dwdt = |k| 2
then replacing each discretization we obtain equations
vt Uk s ntl _ n+1
BOwmlk| =t + 3 Fritt + Blk| It = [kl Loty
=
Wt —
Z F,"Ekz + F:Jelkl + F;n;lil k| I5EL and thk - H{™ =0
o€ey
The final form of finite volume scheme with conditions is now given by
8C, it SR ST ol — ) + BRI = [k
ek, 1Ykl e,k iong app
o€eint(k)
Zaesmt(k |onaldi ), + dekl)(un+l - uZ?) + dzkz(van — oty = k|15 and
|k;|wk Ml — |k|H*" = 0. The border condition is taken imposing a no-flow

condltlon on borders [1, 3] d5, or|(u}f' —u?i') = 0 with 0 € eeae(k). Re-
spect to boundary conditions of bldomaln model, the discretizing is given by
> wer kUl =0, n=0,1,2,...,N.

Finally, we plot result of simulating and programming in Matlab the scheme
of finite volumes for the bidomain model. Constants and parameters for this
simulation are taken from [1, 7, 13|, in such process we consider that myocar-
dial tissue is homogeneous on region [0, 1] x [0, 1] and membrane resistance is
constant. In the following Figures we observe the variation of initial potential

4 06
Yiem)

(a) t=2 ms (b) t=2 ms

(v = 0) when applying an instantaneous stimuli of 1mV in t = 2ms to extra
cell domain in the miocard in plots c), d). We show the potential evolution in
t = 80ms. We may observe that evolution v passing the repolarization process,
where the values of ¢) and d) they are in the order of 1073 while ) and f) are
107, in said graphic evolution is observed transmembrane potential matching

At

n
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phases depolarization and repolarization pattern FizHugh- Nagumo, fulfilling
the characteristics of a model reaction and diffusion.
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