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Abstract
Objective  Imaging studies in diffuse low-grade gliomas (DLGG) vary across centers. In order to establish a minimal core 
of imaging necessary for further investigations and clinical trials in the field of DLGG, we aimed to establish the status quo 
within specialized European centers.
Methods  An online survey composed of 46 items was sent out to members of the European Low-Grade Glioma Network, 
the European Association of Neurosurgical Societies, the German Society of Neurosurgery and the Austrian Society of 
Neurosurgery.
Results  A total of 128 fully completed surveys were received and analyzed. Most centers (n = 96, 75%) were academic and 
half of the centers (n = 64, 50%) adhered to a dedicated treatment program for DLGG. There were national differences regard-
ing the sequences enclosed in MRI imaging and use of PET, however most included T1 (without and with contrast, 100%), T2 
(100%) and TIRM or FLAIR (20, 98%). DWI is performed by 80% of centers and 61% of centers regularly performed PWI.
Conclusion  A minimal core of imaging composed of T1 (w/wo contrast), T2, TIRM/FLAIR, PWI and DWI could be identi-
fied. All morphologic images should be obtained in a slice thickness of ≤ 3 mm. No common standard could be obtained 
regarding advanced MRI protocols and PET.
Importance of the study  We believe that our study makes a significant contribution to the literature because we were able 
to determine similarities in numerous aspects of LGG imaging. Using the proposed “minimal core of imaging” in clinical 
routine will facilitate future cooperative studies.
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Introduction

Despite published standards and guidelines on treatment 
and follow-up of diffuse low-grade glioma (DLGG) patients, 
daily practice frequently demonstrates the inconsistency of 

imaging studies among centers [1, 2]. As the volume of 
DLGG publications increases, the usefulness of single-
center studies will become more limited, as these may be 
difficult to replicate. It has been argued that evidence-based 
practice in the field of DLGG cannot be derived from the 
standard methodology of oncological randomized clinical 
trials [3, 4]. Considering the low prevalence of DLGG [5] 
and the long survival of patients [6], sufficient data might 
be better collected by networks of centers working together 
collaboratively. Numerous demographic parameters, onco-
molecular features and imaging data (including imaging 
DLGG growth rates of follow-up MRIs) will be required. 
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Rigorous evaluation of care is additionally needed, for exam-
ple to prove that maximum safe resection is not only key 
to oncological outcome, but also to establish and maintain 
a best possible quality of life [7, 8]. The expectation that 
randomized oncological studies could add knowledge on 
these two questions is vanishing [3]. We are convinced that 
databases dedicated to DLGG research are required, which 
could include both retro- and prospective data.

The European Low-Grade Glioma Network (ELGGN) 
gathers surgical and neuroscience specialists from centers 
with dedicated teams treating DLGG patients. The network 
was founded 11 years ago to establish the link between all 
subspecialties involved in the field: neurosurgeons, neuro-
oncologists, radiation therapists, neuropathologists, onco-
molecular biologists, neuroradiologists, anaesthesiologists, 
speech therapists, neuropsychologists, and neuroscientists 
involved in functional brain mapping. Several collaborative 
studies have been previously published [3, 9–11].

The ELGGN is a powerful platform to address major 
issues in the management of DLGG. A survey [3] has been 
created in preparation of the 2015 Annual Meeting, which 
met the goal to identify points of consensus in patient man-
agement. Thus, the network should allow to highlight rel-
evant questions for future studies and establish landmark 
projects in the interdisciplinary treatment of DLGG.

Following the initial survey, we now aimed to establish 
a comprehensive imaging survey, in order to investigate the 
consistency of DLGG imaging in specialized centers across 
Europe and to identify a “minimal core of imaging” to facili-
tate cooperative imaging projects within the network.

Methods

An online survey was created by a group of experts in imag-
ing and treatment of DLGG. The use of published imaging 
guidelines [1, 12, 13] was emphasized and local availability 
and usage of advanced imaging modalities was added to the 
survey. The survey was formatted on Survey Grid (EvaSys, 
Electric Paper Evaluationssysteme GmbH Lüneburg, Ger-
many) and sent to all members of the ELGGN, the Euro-
pean Association of Neurosurgical Societies (EANS) plus 
the German (DGNC) and Austrian Society of Neurosurgery 
(ÖGNC). All recipients were members of the respective 
societies and it was specified that the questionnaire should 
be filled out by a multidisciplinary team. Participants were 
not asked to detail how any disagreements were adjudicated, 
precluding analysis of response heterogeneity at the center 
level. The survey contained 45 items (see Supplement 1), 
divided in descriptive data (i.e. amount of DLGG treated per 
year), radiological details (i.e. MRI sequences that are rou-
tinely performed) and questions regarding advanced imaging 
techniques (i.e. diffusion weighted imaging (DWI)).

In order to distinguish between dynamic susceptibility 
contrast perfusion imaging (DSC, named PWI in our sur-
vey) and dynamic contrast-enhanced MR perfusion (DCE, 
named Perfusion in our survey), two perfusion modalities 
were included in the survey, however, the question was 
answered inappropriately, showing that the nomenclature 
used for this particular question was misleading. Technical 
data on MRI scanner manufacturers, acquisition and recov-
ery times, magnetic field strength and contrast agent dosage 
were not acquired. Further, the survey did not evaluate scien-
tific justification of imaging protocols, it depicted a common 
denominator across many centers.

Further sections of the survey inquired the routine use 
of non-invasive mapping (i.e. resting state functional MRI 
(rs-fMRI) or navigated transcranial magnetic stimulation 
(nTMS)) and follow-up imaging protocols. The survey con-
sisted of 28 single-choice, 7 multiple-choice and 10 items 
for free text answers.

In total, 148 data sets were received for detailed analysis. 
Data from outside Europe’s geographical extension (n = 14) 
and incomplete surveys (n = 6) were excluded. Overall, 128 
fully completed surveys were analyzed descriptively for this 
study. For additional information and geographical details 
of the respondents see Table 1.

Results

Basic information

The majority of responding teams worked in an academic 
hospital (n = 96, 75%), 19% (n = 25) were based in com-
munity hospitals, and 6% (n = 8) were located in a private 
hospital environment. Half of the centers (64, 50%) adhered 
to a dedicated MRI protocol for DLGG, while the others 
(64, 50%) did not. There was a broad range in the reported 
operative activity for each center (2–100 cases/year, aver-
age 25). The majority of centers treated less than 40 DLGG 
per year (n = 108, 85%), whereas only 17 centers (13%) 
reported to treat more than 40. Three centers (2%) can be 
considered very high volume centers with 100 DLGG per 
year (see Fig. 1). A total of 3032 DLGG are managed annu-
ally by the responding centers, the majority (1714, 62%) of 
which are treated in centers with dedicated DLGG programs 
compared to 1068 (38%) in centers without. Of the centers 
treating 40 or more DLGG per year 65% used a dedicated 
DLGG protocol.

Physicians involved in treatment of DLGG

The survey showed that there is a variation in the compo-
sition of the multidisciplinary teams involved in DLGG 
management. The majority of centers (84%) discussed their 
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Table 1   Distribution of centers 
per country and average number 
of treated DLGG

Number of centers 
responded

% Avg. no of LGG per 
center and year

Range

Country of practice
 Germany 40 31 20 5–50
 Italy 14 11 10 5–90
 France 9 6 25 3–100
 Switzerland 8 7 20 5–100
 United Kingdom 8 6 30 10–60
 Austria 7 5 20 6–40
 Spain 7 5 5 3–20
 Netherlands 6 5 25 15–40
 Portugal 4 3 20 2–20
 Belgium 3 2 15 15–30
 Greece 3 2 25 10–30
 Poland 3 2 25 20–30
 Czech Republic 2 2 15 15
 Russian Federation 2 2 55 50–60
 Serbia 2 2 15 10–20
 Sweden 2 2 20 20
 Bulgaria 1 < 1 10 10
 Denmark 1 < 1 20 20
 Hungary 1 < 1 n/a n/a
 Lithuania 1 < 1 30 30
 Norway 1 < 1 30 30
 Romania 1 < 1 10 10
 Turkey 1 < 1 20 20
 Ukraine 1 < 1 5 5

Use of 3T imaging 128
 Always 29 22.8
 If available 59 46.5
 Only 1.5T 39 30.7

Identical MR scanner
 Yes 25 20.0
 No 24 19.2
 Mostly yes 72 57.6
 Mostly no 4 3.2

Total number of patients

Slice thickness of T1 imaging (mm)
 < 1.5 66 53.7 – 1585
 1.6–3 44 35.8 – 781
 > 3 13 10.6 – 356

Slice thickness of T2 imaging (mm)
 < 1.5 40 32.8 – 1027
 1.6–3 54 44.3 – 1133
 > 3 28 23.0 – 542

Imaging intervals in relation to the amount of residual disease
  No remnant (weeks)
  < 12 3 2.4
  12–24 87 68.5
  > 24 15 11.8
  52 4 3.1
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patients either before (59, 47%) or after surgical treatment 
(47, 37%). Interestingly, 20 centers (16%) refrained from 
presenting every surgically treated DLGG in a multi-disci-
plinary tumor board, and 16 of these only discussed them if 
adjuvant treatment was advocated. Multi-disciplinary tumor 
boards consisted of several specialties: neurosurgeons were 

present in 99%, followed by neuroradiologists (90%), and 
radiation oncologists (87%). Medical oncologists partici-
pated in 80% of neuro-oncological tumor boards, an addi-
tional 64% included a specialized neuro-oncologist. Nuclear 
medicine specialists, however, were available at the tumor 
board in only 32% of centers.

Use of imaging infrastructure and average slice thickness. Imaging intervals with respect to the amount of 
residual disease

Table 1   (continued) Total number of patients

 < 10 ml remnant (weeks)
  < 12 4 3.1
  12–24 91 71.7
  > 24 12 9.4
  52 0 0.0

 11–15 ml remnant (weeks)
  < 12 4 3.1
  12–24 95 74.8
  > 24 9 7.1
  52 0 0.0

 > 15 ml remnant (weeks)
  < 12 7 5.5
  12–24 97 76.4
  > 24 4 3.1
  52 0 0.0

 Unresectable LGG (weeks)
  < 12 1 0.8
  12–24 97 76.4
  > 24 6 4.7
  52 3 2.4

Fig. 1   Distribution of annual 
DLGG throughout participating 
centers. Most centers treat less 
than 40 DLGG per year
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Imaging

More than half (52%) of the centers routinely used any recent 
MR imaging for treatment decisions and surgical treatment, 
without performing an MRI according to their own dedi-
cated protocol. The imaging had to be carried out in a spe-
cialized neuroradiology unit (i.e. in a university hospital) in 
17% of centers and 31% of centers always scanned their own 
dedicated protocol. The particular sequences applied by the 
center are summarized in Table 2. T1 imaging without and 
with Gadolinium contrast (T1 wo/w) and T2 weighted imag-
ing was obtained in every center (100%), whereas TIRM 
(turbo inversion resonance magnitude) and FLAIR (fluid 
attenuation inversion recovery) are performed in 20 and 
98%, respectively. Centers used a slice thickness < 1.5 mm 
in 52% of T1 and 32% of T2 images and a slice thickness of 
≤ 3 mm in 89% of T1 and 78% of T2 images. Most of the 

centers (89%) obtained DWI in every patient with an addi-
tional 80% obtaining apparent diffusion coefficient (ADC) 
maps routinely. Almost two-thirds of the respondents (61%) 
applied perfusion weighted imaging (PWI) in daily routine.

Follow-up imaging of DLGG always included volumet-
ric analysis (segmentation and approximation) in 45 centers 
(35%) and linear measurement (3 axes on MRI) in 58 centers 
(45%), and 26 centers (20%) evaluated the deformation of 
present lesions or changes in shape to identify progression 
or regression. All measurements were performed by neuro-
radiologists in 59% opposed to 24% by neurosurgeons and 
3% by neurooncologists. In 14% of centers, all members of 
the team performed measurements.

For interpretation of the response in DLGG, the RANO 
criteria [13] were used “always” in 15% of centers and “most 
of the time” in 46% of centers. 17% used the published crite-
ria “hardly ever” and 22% refused to utilize them.

Table 2   Availability of MR-sequences in %

T1+/−Gd T1 weighted imaging with and without Gadolinium contrast, TIRM turbo inversion resonance magnitude, FLAIR fluid attenuated 
inversion recovery, 3D-FLAIR multiplanar reconstruction of FLAIR, T2* gradient-echo T2 with susceptibility, SWI susceptibility weighted 
imaging, PWI perfusion weighted imaging, DWI diffusion weighted imaging, ADC automated diffusion coefficient, sv-1H-MRS single-voxel Pro-
ton magnetic resonance spectroscopy, mv-1H-MRS multi-voxel Proton magnetic resonance spectroscopy, fMRI functional MRI, rs-fMRI resting-
state functional MRI, PET positron emission tomography
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Although 81% of centers specified to adjust their imag-
ing intervals according to the tumor’s previous growth rate, 
more than 75% of centers perform follow-up imaging in 
intervals of 12–24 weeks (see Table 1) in all cases presented, 
regardless of the amount of residual tumor.

Advanced imaging

Additional advanced sequences, like MR spectroscopy 
(MRS) were handled variably throughout the centers. One-
third of centers routinely obtained data from single-voxel 
spectroscopy, another third applied a multi-voxel spectros-
copy in their MRI protocol.

The question “Do you perform amino acid PET in sus-
pected low-grade glioma?” was answered positively in 33% 
of all respondents. However, centers tend to discard PET 
imaging in case of initially negative PET scans. Under these 
circumstances only 9% would repeat PET imaging later. 
Interestingly, some countries like Austria and Belgium had 
a 100% rate of initial PET imaging, whereas French centers 
performed no PET. Assessment of treatment response and 
progression was mostly (80%) done with MRI (T2/FLAIR 
for response, T1wo/w for progression), whereas 14% relied 
on the combination of MRI and amino-acid PET (aaPET; 
if initially positive). Six percent of centers performed MRI 
and aaPET regardless of initial PET presentation. The sur-
vey investigated which imaging the centers would rely on to 
decide whether the tumor has undergone anaplastic transfor-
mation. Unsurprisingly, there is no consensus on the imag-
ing modalities used for detection of anaplastic transforma-
tion. Most centers used combinations of either T1wo/w with 
MRS and PWI or T1wo/w with FET-PET (see Table 3).

The number of MRI studies that would be available for 
further investigation was calculated for every MR sequence 
based on the number of patients treated annually in all 
responding centers. Up to 2800 studies should be available 
for analysis every year (see Table 2).

Functional MRI and non‑invasive brain mapping

The survey demonstrated a wide heterogeneity regarding 
the use of functional MRI (fMRI) for patients with DLGG.

Thirty-one percent routinely used fMRI for every patient, 
while resting-state fMRI is acquired in only 7%. Half of the 
centers (50%) used fMRI for both, clinical and research pur-
poses, 42% exclusively clinical, and 6% only for research. A 
minority of 2% used fMRI for didactic purposes in training 
of students or residents.

The final part of the survey evaluated brain mapping and 
the respective technique of choice: fMRI, nTMS, or intra-
operative direct electrical cortical and subcortical stimula-
tion. 102 centers (80%) preferred invasive intraoperative 
direct electrical cortical and subcortical stimulation over 

noninvasive procedures. 8 centers (6%), however, would 
have chosen nTMS, whereas 18 centers (14%) preferred 
fMRI. The number of centers using magnetoencephalogra-
phy (MEG) was low, which fits the distribution of the tech-
nique. 87% of centers don’t use MEG or do not own one, 
although 71% recognized the scientific possibilities of MEG 
or thought it would be nice to have.

Discussion

Our survey revealed a high level of homogeneity in DLGG 
imaging workup throughout Europe. Nonetheless, we were 
able to identify heterogeneities that need to be highlighted. 
Of note, questions were not designed as detailed individual 
cases and we acknowledge that this method might have pro-
voked heterogeneity of responses.

Minimal core of imaging

Ellingson et al. [1] proposed a standardized brain imaging 
protocol for tumor patients. We support the principle of cre-
ating standardized protocols for DLGG patients. This should 
include minimum imaging datasets, recommended imaging 
frequency and recommendations about additional sequences. 
The goal of establishing a minimal core of imaging would 

Table 3   Choice of imaging modalities for detection of malignant 
transformation

n %

T1 + PWI + MRS 23 18
T1 + FET-PET 20 16
T1 + PWI 20 16
T1 19 15
T1 + PWI + FET-PET 10 8
T1 + PWI + MRS + FET-PET 8 6
T1 + MRS 4 3
T1 + MRS + FET-PET 3 2
T1 + PWI + MRS + other 3 2
FET-PET 3 2
PWI + MRS 3 2
T1 + PWI + other 2 2
T1 + other 2 2
other 8 6
Other
 Biopsy/resection 7 6
 Evaluate changes in growth rate/volumet-

ric expansion
3 2

 F-DOPA PET 1 1
 Arterial-spin labelling MRI 1 1
 DWI/ADC 1 1
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be to allow further investigations with uniform imaging 
throughout different countries. This would enable to include 
numerous patients in future prospective cohorts, ensuring a 
sufficient volume of data to perform big data analysis [14].

The minimal core of imaging in DLGG needs to take 
regional and national differences regarding technical stand-
ards and reimbursement into account. Therefore, the fol-
lowing imaging algorithm is proposed: MR imaging should 
incorporate sequences for morphologic descriptive analysis 
and those focusing on potential malignant transformation. 
T1wo/w and T2 images were used by all centers and there-
fore represent the cornerstone of morphologic imaging. In 
addition, TIRM or FLAIR sequences should be obtained 
and can also be used for volumetric assessment of DLGG. 
Although several recommendations set the minimum level 
of slice thickness in T2 and TIRM/FLAIR imaging to 
≤ 4 mm [1], it is known that slice thickness is key for accu-
rate volumetric and treatment response assessment [15–17]. 
Perfusion weighted imaging (PWI) is used frequently for 
assessment of treatment response and detection of anaplastic 
transformation [18, 19]. In our survey, response and trans-
formation were predominantly determined with MRI. T1 
(with contrast) and PWI were used in 87 and 55%, respec-
tively. Diffusion weighted imaging (DWI), and especially 
the computed ADC has been used to investigate malignant 
transformation [20] and is applied in up to 90% of centers.

We therefore recommend that the minimal MRI sequence 
dataset should consist of T1wo/w, T2 and TIRM/FLAIR, 
all in low slice thickness (≤ 3 mm) to facilitate volumet-
ric assessment and further include PWI and DWI to predict 
malignant transformation. Based on this survey, we cannot 
make any recommendation regarding the use of additional 
advanced imaging techniques (spectroscopy, fMRI, PET).

Imaging intervals

More than 75% adhered to follow-up imaging intervals of 
12 to 24 weeks and 81% adjusted their imaging intervals 
depending on the initial growth rate of the tumor [21], 
which is in accordance with current guidelines [2]. It has 
been shown that the velocity of tumor expansion is a strong 
predictor of the patient’s prognosis [21]. However, no stud-
ies have addressed the question of how often MRI should be 
obtained during follow-up, especially with regard to the het-
erogeneity of DLGG. Although early postoperative FLAIR 
is known to overestimate the volume of residual tumor [22], 
most authors recommend an early postoperative MRI within 
72 h [23–25] to determine the extent of resection and visual-
ize possible postoperative complications. Follow-up imag-
ing intervals of 12–24 weeks are recommended with longer 
intervals for cases of “less aggressive” tumours [1, 13, 26]. 
The definition of “aggressiveness”, however, varies in the 
literature.

Standardized response assessment protocols

Only 15% of the centers reported to use RANO criteria for 
low-grade gliomas [13] thoroughly in all their DLGG cases 
for the interpretation of treatment response, while 46% of 
centers do so “most of the time”. Thus, 39% of centers do 
not routinely apply these criteria. RANO criteria include 
T1wo/w, T2/FLAIR, development of new lesions, clini-
cal status, and steroid use in order to categorize treatment 
effects in complete response, partial response, stable disease, 
and progressive disease. Since DLGG constitutes a slowly 
progressive disease, these criteria were defined in order to 
achieve a standardized common ground for the definitions of 
treatment responses and endpoints in clinical trials. Meas-
urement of tumor diameter has various shortcomings, not 
only the high intra- and interobserver variability [27], but 
also the known problem of head positioning during acquisi-
tion of the MRI [16, 17]. Then, assuming that many cent-
ers are performing volumetric assessment of tumors, how 
should treatment response be defined? Translating volume 
to diameter (D = (2 × V)^(1/3)) is a fundamental step. In 
contrast to the assessment of tumor diameters, the concept of 
volume-derived mean diameter overcomes the above men-
tioned confounding factors. Moreover, the curve showing 
evolution of mean diameter with time can be easily analyzed 
by applying a linear fit. Following the curve of the diameter 
as a function of time is a more sensitive way to monitor 
treatment response than applying RANO criteria [21, 28, 
29]. Indeed, the major concern about RANO criteria is that 
pretreatment dynamics is not integrated in the definition of 
the different response categories. However, it seems obvious 
that putting down the tumor growth rate to 0 mm/year with 
chemotherapy, while its pretreatment value was 6 mm/year, 
should be interpreted as a response, whereas RANO criteria 
would interpret this as “stable disease”.

In contrast to this highly standardized protocol, our sur-
vey focused more on the clinical routine in an attempt to 
accurately reflect every day practice in the treatment of 
DLGG across Europe. Although the highly standardized 
approach provided by the RANO criteria is not systemati-
cally applied, our data demonstrate that at least the imag-
ing studies, comply in most centers with the RANO-defined 
protocols.

Additionally, other factors should also be interpreted into 
our decision making, such as cognitive testing, psychologi-
cal burden of disease, and seizure activity.

Malignant transformation

There is no consensus regarding the radiological malig-
nant transformation in DLGG throughout Europe. Newly 
apparent contrast enhancement indicating breakdown of 
the blood brain barrier represents the classical sign of 
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malignant transformation (MT) of these tumors [30], but 
preceding changes in advanced MRI investigations may 
allow identification of patients at risk up to 12 months 
earlier [31]. Simple measurement of growth rate [19, 
32, 33] and integration of MR spetroscopy [18, 19, 34] 
are used routinely in most of the centers as predictors 
of tumor transformation. Both, proton- and phosphorus 
spectroscopy, available in numerous centers, have been 
proven to correlate with Ki67 and IDH1 mutation [35]. 
Perfusion measurements, and in particular the determina-
tion of relative cerebral blood volume (rCBV), seems to 
correlate with the vascularity determined at histopatho-
logical examination [31]. Arising of lactate resonance 
is predictive of the increase of rCBV up to 1.75, this 
parameter is predictive for a dramatic decrease of overall 
survival [36–38], and are indicators of MT that may be 
identified months before apparent contrast enhancement. 
Likewise, ADC can be used for discrimination of tumor 
subtypes and raising suspicion of malignization [20]. 
Nevertheless, both techniques are only supported by a 
low level of evidence [20].

Positron emission tomography (PET)

The use of amino acid PET (aaPET) was surprisingly 
variable between centers and countries. While Austria 
and Belgium performed PET in 100% of cases, none of 
the Dutch or French centers used PET at all. In contrast 
to patients with WHO grades III/IV gliomas, the evidence 
for aaPET to monitor patients with WHO grade II gliomas 
is limited [39, 40]. Most WHO grade II gliomas are non-
enhancing with infiltrating tumor borders, and so several 
studies demonstrated the usefulness of aaPET in defining 
tumor extent or malignant transformation [41–45]. This 
has been demonstrated and validated in series for 11C-
MET, 18F-FET, and 18F-FDOPA PET [46]. Although 
MRI is the standard of care in following DLGG patients, 
its reliability in distinguishing tumor tissue from treat-
ment effects is limited [47]. Transient blood–brain barrier 
alteration with contrast enhancement after radiotherapy 
with or without concomitant Temozolomide, for example, 
can mimic tumor progression. There are numerous rea-
sons for the restricted application of PET: (1) While 18F-
FDG is used routinely, access to aaPET is limited [46]. 
(2) Another obstacle to withhold patients and healthcare 
professionals from PET is limited reimbursement. In 
our survey, 9% of centers repeated aaPET scans during 
follow-up, even if they were initially negative. However, 
there are several groups advocating to perform aaPET 
in all cases of DLGG [48], notwithstanding the initial 
uptake behavior.

fMRI and noninvasive neurophysiological imaging

fMRI has repeatedly been shown to harbor a low specificity 
and sensitivity for any presurgical evaluation [49–53]. Since 
the tumor itself impairs oxygenation levels in its surrounding 
fMRI is not a reliable surrogate marker for neuronal activity 
in DLGG patients [50, 51, 54]. Nevertheless, eloquence is 
thoroughly based on fMRI in as much as 16% of centers.

Yet, 80% of European centers prefer invasive intraopera-
tive direct electrical cortical and subcortical stimulation over 
noninvasive procedures for the determination of eloquent 
cortex, which reflects commonly agreed practice and level 
of evidence [55–57].

With the still small but increasing distribution of nTMS, 
some centers chose this technique for surgical decision 
making, which also illustrates the highly specialized nature 
of the enrolled centers. Although nTMS is a noninvasive 
modality, several reports proved not only the accuracy but 
also the feasibility of using it as a highly reliable tool for pre-
surgical planning and intraoperative navigation [23, 58, 59] 
of primary motor functions. While non-invasive mapping 
can be reliably performed for primary motor functions (task-
based fMRI, nTMS), this is currently not true for higher 
order functions (movement coordination, language, spatial 
consciousness, mentalizing, …) [60].

MEG was also rarely used. Nonetheless, despite its lim-
ited availability and high costs, its usefulness for presur-
gical planning and follow-up has repeatedly been reported 
[61–63].

Irrespective of the used modality, noninvasive evaluation 
of eloquent function, especially if adjacent to or within the 
tumor is mandatory in order to identify the optimal time 
point for re-resection. This is even more relevant in the con-
trast of tumor-induced cortical reorganization potentially 
allowing gross total resection of previously unresectable 
tumors [64–68].

In the near future, ongoing developments might be capa-
ble to achieve a change in imaging practice. Alongside with 
huge developments of machine learning using conven-
tional MRI, which suppose the robustness of standardized 
sequences; an increased interest of metabolic multinuclear 
MR imaging and integration of multiparametric data into 
realistic metabolic-dynamic mathematical models is noticed.

Strengths and limitations

The survey solely focused on imaging modalities for pre-
operative workup and follow up investigations of DLGG 
patients. The large number of centers involved and the high 
conformity of surgical treatment within participants of the 
ELGGN represent the major strength of this study. Up to 
2800 MRIs per year would be available in this network. 
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Online surveys are limited by the accuracy of the given 
statements and their representation of a multidisciplinary 
team cannot be guaranteed in online survey, which limits 
the reliability of the results. Questions were not designed 
as detailed individual cases and we acknowledge that this 
method might have provoked heterogeneity of responses. 
Additionally, the study did not aim to investigate the out-
come of DLGG treatment.

Conclusion

It appears mandatory to standardize the initial management 
and follow-up of DLGG in order to maximize the number of 
included patients in future multicentric studies. If a certain 
proximity of imaging protocol throughout Europe is already 
present, this work emphasizes the need to clarify important 
questions such as assessment of treatment response or detec-
tion of DLGG malignant transformation. ELGGN can help 
to resolve important issues and to promote a better care for 
patients suffering from DLGG.
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